
1

ICS103 Programming in C

Lecture 7: Repetition Structures

2

Overview
• Repetition in Programs
• Counting Loops

Using while statement
– Compound assignment operators

Using for statement
– Increment and Decrement Operators

• Conditional Loops
sentinel-Controlled loops
Nested loop
Do-While loop
Flag-Controlled loop

• Hand Tracing the code
• Comparing Double numbers
• Debugging your code

3

Repetition in Programs

• We have learned how to write code that chooses
between multiple alternatives.

• It is also useful to be able to write code that repeats
an action.

• Writing out a solution to a specific case of problem
can be helpful in preparing you to define an algorithm
to solve the same problem in general.

• After you solve the specific case, you need to
determine whether loops will be required in the
general algorithm and if so which loop structure to
choose from.

4

Flow Diagram of Loop Choice Process

5

Counting Loops

• The loop shown below in pseudo code is called a counter-
controlled loop (or counting loop) because its repetition is
managed by a loop control variable whose value represents a
count.

Set loop control variable to an initial value of 0
While loop control variable < final value

... //Do something multiple times
Increase loop control variable by 1.

• We use a counter-controlled loop when we can determine prior
to loop execution exactly how many loop repetitions will be
needed to solve the problem.

6

The While Statement
• This slide shows a program fragment that computes and displays the gross

pay for seven employees. The loop body is the compound statements (those
between { and }).

• The loop repetition condition controls the while loop.
count_emp = 0;
while (count_emp < 7)
{

printf("Hours> ");
scanf("%d",&hours);
printf("Rate> ");
scanf("%lf",&rate);
pay = hours * rate;
printf("Pay is $%6.2f\n", pay);
count_emp = count_emp + 1;

}
printf("\nAll employees processed\n");

loop repetition condition

7

While Statement
• General form:
While (loop repetition condition)
{

//Steps to perform. These should eventually
//result in condition being false

}

• Syntax of the while Statement:
Initialization. i.e. count_emp = 0;

Testing. i.e. count_emp < 7

Updating i.e. count_emp = count_emp + 1;

• The above steps must be followed for every while loop.
• If any of these are skipped it may produce an infinite loop

8

General While Loops

• In the above example we had count_emp < 7, but
we may have more or less than 7 employees.

• To make our program fragment more general we
should use a printf/scanf to get the number of
employees and store it is num_emp.

• Now we can have count_emp < num_emp and
our code is more general.

9

Computing Sum
• If we want to compute , we need to go

1+2+3+...+100
• We can use a while loop.

/* computes the sum: 1 + 2 + 3 ++ 100 */
#include <stdio.h>

int main(void) {
int sum =0, i = 1;

while (i <= 100) {
sum = sum + i;
i = i + 1;

}
printf("Sum is %d\n", sum);
return 0;

}

∑
=

100

1i
i

10

Compound Assignment Operators

• Several times we have seen:
variable = variable <operator> expression;
Example: sum = sum + i;

• where <operator> is a C operator
• This occurs so often, C gives us short cuts.
• Instead of writing x = x +1 we can write:
x += 1.

• W can use -=, *=, /=, and %= in the same way.

11

The For Statement
• A better way to construct a counting loop is to use the for

statement.
• C provides the for statement as another form for implementing

loops.
• As before we need to

Initialize the loop control variable
Test the loop repetition condition
Update the loop control variable.

• An important feature of the for statement in C is that it
supplies a designated place for each of these three
components.

• An example of the for statement is shown in the next slide.

12

For Example

• To compute the sum of 1 to 100:
int sum = 0;
int i;
for (i = 1; i <= 100; i++)
{

sum = sum + i;
}

• Note: i++ is the same as i = i + 1
and as i += 1.

13

General Form of For statement
for (initialize; test; update)
{

//Steps to perform each iteration
}

• First, the initialization expression is executed.
• Then, the loop repetition condition is tested.
• If the condition is true, the statement enclosed in { } are

executed.
• After that the update expression is evaluated.
• Then the loop repetition condition is retested.
• The statement is repeated as long as the condition is true.
• For loop can be used to count up or down by any interval.

14

Program Style

• For clarity, it can be useful to place each expression
of the for heading on a separate line.

• If all three expressions are very short, we will place
them together on one line, like we did in the example.

• The body of the for loop is indented just as the if
statement.

15

Increment and Decrement Operators

• The counting loops that we have seen have all
included assignment expressions of the form
counter = counter + 1
or
counter++
or
counter += 1

• This will add 1 to the variable counter. If we use a -
instead of a +, it will subtract 1 from the variable
counter.

• Be careful about using the ++ or -- options.

16

Increment and Decrement Other Than 1

• Instead of adding just 1, we can use sum = sum + x
or sum += x

• Both of these will take the value of sum and add x to
it and then assign the new value to sum.

• We can also use temp = temp -x or temp -= x
• Both of these will take the value of temp and

subtract x from it and then assign the new value to
temp.

17

Prefix and Postfix Increment/Decrement

• The values of the expression in which the ++ operator
is used depends on the position of the operator.

• When the ++ operator is placed immediately in front
of its operand (prefix increment, Ex: ++x), the value
of the expression is the variable’s value after
incrementing.

• When the ++ operator is placed immediately after the
operand (postfix increment , Ex: x++), the value of
the expression is the value of the variable before it is
incremented.

18

Comparison of Prefix and Postfix
Increments

19

More on prefix and postfix operator

• If n = 4, what will be the output of the following?

printf(“%3d”, --n);
printf(“%3d”, n);

printf(“%3d”, n--);
printf(“%3d”, n);

4 33 3

20

Conditional Loops

• In many programming situations, we will not be able
to determine the exact number of loop repetitions
before loop execution begins.

• Below is an example where we do not know how
many times our program will repeat.

21

Example

• We need a program that prompts the user for a value and
multiplies it by the value of the variable temp. It then stores
the result in temp. It keeps doing this until the user enters a 0.

• The outline of the program would be as follows:

assign temp the value of 1
prompt the user for a value
while value does not equal 0
assign temp the value of temp times value
prompt the user for a value

output the value of temp

22

Program Fragment
temp = 1;
printf("Enter a value, 0 will stop the program> ");
scanf("%d",&value);

while(value != 0) {
temp = temp * value;

printf("Enter a value, 0 will stop the program>");
scanf("%d",&value);

}
printf("The product is %d", temp);

• It is very common for loops to have identical initialization and
update steps while performing input operations where the
number of input values is not known in advance.

Initialization

Testing

Update

23

Sentinel Controlled Loops

• Many programs with loops input one or more additional data
items each time the loop body is repeated.

• Often we don’t know how many data items the loop should
process when it begins execution.

• We must find some way to signal the program to stop reading
and processing new data.

• One way to do this is to instruct the user to enter a unique data
value, called a sentinel value, after the last data item.

• The loop repetition condition tests each data item and causes
loop exit when the sentinel value is read.

• This is what we did in the previous example: use the value 0 to
stop the loop.

24

Sentinel-Controlled while Loop
/* Compute the sum of a list of exam scores. */

#include <stdio.h>
#define SENTINEL -99

int main(void) {
int sum = 0, /* sum of scores input so far */

score; /* current score */
printf("Enter first score (or %d to quit)> ", SENTINEL);
scanf("%d", &score);

while (score != SENTINEL) {
sum += score;
printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score);
}
printf("\nSum of exam scores is %d\n", sum);
system("pause");
return (0);

}

25

Sentinel Controlled for loop
• Because the for statement combines the initialization,

test, and update in once place, some programmers
prefer to use it to implement sentinel-controlled loops.

printf("Enter first score (or %d to quit)> ", sentinel);
for(scanf("%d",&score);

score != sentinel;
scanf("%d",&score))

{
sum += score;
printf("Enter next score (%d to quit)> ", sentinel);

}

26

Nested Loops

• Usually used to work with two dimensional arrays
(later).

• Nested loops consist of an outer loop with one or
more inner loops.

• Each time the outer loop is repeated, the inner loops
are reentered

Their loop control expressions are reevaluated
All required iterations are performed again.

27

Example: Bald eagle sightings for a year
/* Tally by month the bald eagle sightings for the year. Each month's
* sightings are terminated by the sentinel zero. */

#include <stdio.h>
#define SENTINEL 0
#define NUM_MONTHS 12

int
main(void)
{

int month, /* number of month being processed */
mem_sight, /* one member's sightings for this month */
sightings; /* total sightings so far for this month */

printf("BALD EAGLE SIGHTINGS\n");
for (month = 1;

month <= NUM_MONTHS;
++month) {
sightings = 0;
for (scanf("%d", &mem_sight);

mem_sight != SENTINEL;
scanf("%d", &mem_sight)) {
sightings += mem_sight;

}
printf(" month %2d: %2d\n", month, sightings);

}
return (0);

}

/*Sample Input data */
2 1 4 3 0
1 2 0
0
5 4 1 0
. . .

/*sample output */

BALD EAGLE SIGHTINGS
month 1: 10
month 2: 3
month 3: 0
month 4: 10
. . .

28

What is the Output?
/*
* Illustrates a pair of nested counting loops
*/

#include <stdio.h>

Int main(void)
{

int i, j; /* loop control variables */
printf(" I J\n");
for (i = 1; i < 4; ++i) {

printf("Outer %6d\n", i);
for (j = 0; j < i; ++j) {

printf(" Inner%9d\n", j);
} /* end of inner loop */

} /* end of outer loop */

return (0);
}

//output:
I J

Outer 1
Inner 0

Outer 2
Inner 0
Inner 1

Outer 3
Inner 0
Inner 1
Inner 2

29

Do While statement

• Both the for statement and the while statement
evaluate the loop condition before the first
execution of the loop body.

• In most cases, this pretest is desirable and
prevents the loop from executing when there
may be no data items to process

• There are some situations, generally involving
interactive input, when we know that a loop
must execute at least one time.

30

Do-While Example
#include <stdio.h>
#define KMS_PER_MILE 1.609

/* converts miles to kilometers - repeateadly */
int main(void) {

double kms,
miles;

char res; //for user response [y/n]

do {
printf("Enter the distance in miles> ");
scanf("%lf", &miles);
kms = KMS_PER_MILE * miles;
printf("That equals %f kilometers. \n", kms);
printf("\nDo you wish to try again [y/n]? ");
getchar(); //skips the new line character.
scanf("%c", &res);

} while (res == 'Y' || res == 'y');

system("PAUSE");
return (0);

}

31

Do-While Example
/* Gets an integer input value in the range from n_min to n_max. */
#include <stdio.h>
int main(void) {

int n_min, n_max; /* minimum and maximum values */
int inval, /* data value which user enters */

status; /* status value returned by scanf */
char skip_ch; /* character to skip */
int error; /* error flag for bad input */
printf("Enter minimum and maximum valid values> ");
scanf("%d%d", &n_min, &n_max);
do {

printf("Enter an integer in the range from %d to %d inclusive> ",
n_min, n_max);

status = scanf("%d", &inval);
if (status == 1) {

error = 0;
} else {

error = 1;
scanf("%c", &skip_ch);
printf("\nInvalid character>>%c>> Skipping rest of line.\n",

skip_ch);
do {

scanf("%c", &skip_ch);
} while (skip_ch != '\n') ;

}
} while (error || inval < n_min || inval > n_max) ;
/* Rest of Processing */

}

scanf returns
how many
values it
actually read
from user

32

Flag Controlled Loops

• Sometimes a loop repetition condition becomes so complex
that placing the full expression in its usual spot is awkward.

• In many cases, the condition may be simplified by using a
flag.
while (flag)
{

….
}

• A flag is a type int variable used to represent whether or not
a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).

33

Flag Controlled Example
/* Gets a valid fraction */
int main(void) {

int num, den; /* numerator, denominator of fraction */
char slash; /* character between numerator and denominator */
int status; /* status code returned by scanf indicating number of valid values obtained */
int error; /* flag indicating whether or not an error has been detected in current input */
char discard; /* unprocessed character from input line */

do {
/* No errors detected yet */
error = 0;

/* Get a fraction from the user */
printf("Enter a common fraction as two integers separated by ");
printf("a slash\nand press <enter>\n> ");
status = scanf("%d%c%d", &num, &slash, &den);

34

Flag Controlled Example
/* Validate the fraction */

if (status < 3) {
error = 1;
printf("Input invalid-please read directions carefully\n");

} else if (slash != '/') {
error = 1;
printf("Input invalid-separate numerator and denominator");
printf(" by a slash (/)\n");

} else if (den <= 0) {
error = 1;
printf("Input invalid-denominator must be positive\n");

}

/* Discard extra input characters */
do {

scanf("%c", &discard);
} while (discard != '\n');

} while (error);

/* Finish processing of fraction - code omitted */
}

35

Hand Tracing the Code
• A critical step in program design is to verify that an

algorithm or C statement is correct before you spend
extensive time coding or debugging it.

• Often a few extra minutes spent in verifying the
correctness of an algorithm saves hours of coding and
testing time.

• A hand trace or desk check is a careful, step-by-step
simulation on paper of how the computer executes the
algorithm or statement.

• The results of this simulation should show the effect
of each step’s execution using data that is relatively
easy to process by hand.

36

int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)
total = 3;

else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

Hand Trace

Given this code,
what is the output?

37

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d &&

Output:

Given this code,
what is the output?

38

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2

&&

Output:

Given this code,
what is the output?

39

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

Output:

Given this code,
what is the output?

40

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

Output:

Given this code,
what is the output?

41

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

Output:

Given this code,
what is the output?

42

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

False

Output:

Given this code,
what is the output?

43

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4
False

Output:

Given this code,
what is the output?

44

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

True

Output:

Given this code,
what is the output?

45

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so longOutput:

Given this code,
what is the output?

46

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so longOutput:

Given this code,
what is the output?

47

Hand Trace int main (void)
{

int a=3, b=4, c=5, d=6,total=2;
if(a<b && c>d)

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so long

main exits

Output:

Given this code,
what is the output?

