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ICS103 Programming in C

Lecture 7: Repetition Structures
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Overview
• Repetition in Programs
• Counting Loops

Using while statement
– Compound assignment operators

Using for statement
– Increment and Decrement Operators

• Conditional Loops
sentinel-Controlled loops
Nested loop
Do-While loop
Flag-Controlled loop

• Hand Tracing the code
• Comparing Double numbers
• Debugging your code
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Repetition in Programs

• We have learned how to write code that chooses 
between multiple alternatives.

• It is also useful to be able to write code that repeats 
an action.

• Writing out a solution to a specific case of problem 
can be helpful in preparing you to define an algorithm 
to solve the same problem in general.

• After you solve the specific case, you need to 
determine whether loops will be required in the 
general algorithm and if so which loop structure to 
choose from.
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Flow Diagram of Loop Choice Process
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Counting Loops

• The loop shown below in pseudo code is called a counter-
controlled loop (or counting loop) because its repetition is 
managed by a loop control variable whose value represents a 
count.

Set loop control variable to an initial value of 0
While loop control variable < final value

... //Do something multiple times
Increase loop control variable by 1.

• We use a counter-controlled loop when we can determine prior 
to loop execution exactly how many loop repetitions will be 
needed to solve the problem.
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The While Statement
• This slide shows a program fragment that computes and displays the gross 

pay for seven employees. The loop body is the compound statements (those 
between { and }).

• The loop repetition condition controls the while loop.
count_emp = 0;
while (count_emp < 7)
{

printf("Hours> ");
scanf("%d",&hours);
printf("Rate> ");
scanf("%lf",&rate);
pay = hours * rate;
printf("Pay is $%6.2f\n", pay);
count_emp = count_emp + 1;

}
printf("\nAll employees processed\n");

loop repetition condition
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While Statement
• General form:
While (loop repetition condition)
{

//Steps to perform.  These should eventually
//result in condition being false

}

• Syntax of the while Statement:
Initialization. i.e. count_emp = 0;

Testing. i.e. count_emp < 7

Updating i.e. count_emp = count_emp + 1;

• The above steps must be followed for every while loop.
• If any of these are skipped it may produce an infinite loop
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General While Loops

• In the above example we had count_emp < 7, but 
we may have more or less than 7 employees.

• To make our program fragment more general we 
should use a printf/scanf to get the number of 
employees and store it is num_emp.

• Now we can have count_emp < num_emp and 
our code is more general.
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Computing Sum
• If we want to compute          , we need to go 

1+2+3+...+100
• We can use a while loop.

/* computes the sum: 1 + 2 + 3 + ....+ 100 */
#include <stdio.h>

int main(void) {
int sum =0, i = 1;

while (i <= 100) {
sum = sum + i;
i = i + 1;

}
printf("Sum is %d\n", sum);
return 0;

}

∑
=

100

1i
i
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Compound Assignment Operators

• Several times we have seen:
variable = variable <operator> expression;
Example: sum = sum + i;

• where <operator> is a C operator
• This occurs so often, C gives us short cuts.
• Instead of writing x = x +1 we can write:
x += 1.

• W can use -=, *=, /=, and %= in the same way.
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The For Statement
• A better way to construct a counting loop is to use the for 

statement.
• C provides the for statement as another form for implementing 

loops.
• As before we need to

Initialize the loop control variable
Test the loop repetition condition
Update the loop control variable.

• An important feature of the for statement in C is that it 
supplies a designated place for each of these three 
components.

• An example of the for statement is shown in the next slide.
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For Example

• To compute the sum of 1 to 100:
int sum = 0;
int i;
for (i = 1; i <= 100; i++)
{

sum = sum + i;
}

• Note: i++ is the same as i = i + 1
and as  i += 1.
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General Form of For statement
for (initialize; test; update)
{

//Steps to perform each iteration
}

• First, the initialization expression is executed.
• Then, the loop repetition condition is tested.
• If the condition is true, the statement enclosed in { } are 

executed.
• After that the update expression is evaluated.
• Then the loop repetition condition is retested.
• The statement is repeated as long as the condition is true.
• For loop can be used to count up or down by any interval.
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Program Style

• For clarity, it can be useful to place each expression 
of the for heading on a separate line.

• If all three expressions are very short, we will place 
them together on one line, like we did in the example.

• The body of the for loop is indented just as the if 
statement.
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Increment and Decrement Operators

• The counting loops that we have seen have all 
included assignment expressions of the form
counter = counter + 1
or
counter++
or
counter += 1

• This will add 1 to the variable counter. If we use a -
instead of a +, it will subtract 1 from the variable 
counter.

• Be careful about using the ++ or -- options.
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Increment and Decrement Other Than 1

• Instead of adding just 1, we can use sum = sum + x
or sum += x

• Both of these will take the value of sum and add x to 
it and then assign the new value to sum.

• We can also use temp = temp -x or temp -= x
• Both of these will take the value of temp and 

subtract x from it and then assign the new value to 
temp.
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Prefix and Postfix Increment/Decrement

• The values of the expression in which the ++ operator 
is used depends on the position of the operator.

• When the ++ operator is placed immediately in front 
of its operand (prefix increment, Ex: ++x), the value 
of the expression is the variable’s value after
incrementing.

• When the ++ operator is placed immediately after the 
operand (postfix increment , Ex: x++), the value of 
the expression is the value of the variable before it is 
incremented.
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Comparison of Prefix and Postfix 
Increments
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More on prefix and postfix operator

• If n = 4, what will be the output of the following?

printf(“%3d”, --n);
printf(“%3d”, n);

printf(“%3d”, n--);
printf(“%3d”, n);

4 33 3
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Conditional Loops

• In many programming situations, we will not be able 
to determine the exact number of loop repetitions 
before loop execution begins.

• Below is an example where we do not know how 
many times our program will repeat.
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Example

• We need a program that prompts the user for a value and 
multiplies it by the value of the variable temp.  It then stores 
the result in temp.  It keeps doing this until the user enters a 0.

• The outline of the program would be as follows:

assign temp the value of 1
prompt the user for a value
while value does not equal 0
assign temp the value of temp times value
prompt the user for a value

output the value of temp
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Program Fragment
temp = 1;
printf("Enter a value, 0 will stop the program> ");
scanf("%d",&value);

while(value != 0) {
temp = temp * value;

printf("Enter a value, 0 will stop the program>");
scanf("%d",&value);

}
printf("The product is %d", temp);

• It is very common for loops to have identical initialization and
update steps while performing input operations where the 
number of input values is not known in advance.

Initialization

Testing

Update
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Sentinel Controlled Loops

• Many programs with loops input one or more additional data 
items each time the loop body is repeated.

• Often we don’t know how many data items the loop should 
process when it begins execution.

• We must find some way to signal the program to stop reading 
and processing new data.

• One way to do this is to instruct the user to enter a unique data 
value, called a sentinel value, after the last data item.

• The loop repetition condition tests each data item and causes 
loop exit when the sentinel value is read.

• This is what we did in the previous example: use the value 0 to 
stop the loop.
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Sentinel-Controlled while Loop
/* Compute the sum of a list of exam scores. */

#include <stdio.h>
#define SENTINEL -99

int main(void)  {
int sum = 0,   /* sum of scores input so far */

score;     /* current score */
printf("Enter first score (or %d to quit)> ", SENTINEL);
scanf("%d", &score );

while   (score != SENTINEL) {
sum += score;
printf("Enter next score (%d to quit)> ", SENTINEL);

scanf("%d", &score);
}
printf("\nSum of exam scores is %d\n", sum);
system("pause");
return (0);

}
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Sentinel Controlled for loop
• Because the for statement combines the initialization, 

test, and update in once place, some programmers 
prefer to use it to implement sentinel-controlled loops.

printf("Enter first score (or %d to quit)> ", sentinel);
for( scanf("%d",&score);

score != sentinel;
scanf("%d",&score))

{
sum += score;
printf("Enter next score (%d to quit)> ", sentinel);

}
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Nested Loops

• Usually used to work with two dimensional arrays 
(later).

• Nested loops consist of an outer loop with one or 
more inner loops.

• Each time the outer loop is repeated, the inner loops 
are reentered

Their loop control expressions are reevaluated
All required iterations are performed again.
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Example: Bald eagle sightings for a year
/* Tally by month the bald eagle sightings for the year. Each month's 
* sightings are terminated by the sentinel zero. */

#include <stdio.h>
#define SENTINEL   0
#define NUM_MONTHS 12

int
main(void)
{

int month,     /* number of month being processed */
mem_sight, /* one member's sightings for this month */
sightings;  /* total sightings so far for this month */

printf("BALD EAGLE SIGHTINGS\n");
for (month = 1;

month <= NUM_MONTHS;
++month) {
sightings = 0;
for (scanf("%d", &mem_sight);

mem_sight != SENTINEL;
scanf("%d", &mem_sight)) {
sightings += mem_sight;

}
printf("  month %2d: %2d\n", month, sightings);

}
return (0);

}

/*Sample Input data */
2 1 4 3 0
1 2 0
0
5 4 1 0
. . .

/*sample output */

BALD EAGLE SIGHTINGS
month  1: 10
month  2:  3
month  3:  0
month  4: 10
. . .
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What is the Output?
/*
* Illustrates a pair of nested counting loops
*/

#include <stdio.h>

Int main(void)
{

int i, j;   /* loop control variables */
printf("           I    J\n");      
for  (i = 1;  i < 4;  ++i)   { 

printf("Outer %6d\n", i);
for  (j = 0;  j < i;  ++j)   { 

printf("  Inner%9d\n", j);
}   /* end of inner loop */

}   /*  end of outer loop */

return (0);
}

//output:
I   J

Outer      1
Inner        0

Outer      2
Inner        0
Inner        1

Outer      3
Inner        0
Inner        1
Inner        2
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Do While statement

• Both the for statement and the while statement 
evaluate the loop condition before the first 
execution of the loop body.

• In most cases, this pretest is desirable and 
prevents the loop from executing when there 
may be no data items to process

• There are some situations, generally involving 
interactive input, when we know that a loop 
must execute at least one time.
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Do-While Example
#include <stdio.h>
#define KMS_PER_MILE 1.609

/* converts miles to kilometers - repeateadly */
int main(void) {

double kms,
miles;                

char res;  //for user response [y/n]

do {       
printf("Enter the distance in miles> ");
scanf("%lf", &miles);          
kms = KMS_PER_MILE * miles;          
printf("That equals %f kilometers. \n", kms);
printf("\nDo you wish to try again [y/n]? ");              
getchar(); //skips the new line character.
scanf("%c", &res);

} while (res == 'Y' || res == 'y');

system("PAUSE");
return (0);

}
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Do-While Example
/* Gets an integer input value in the range from n_min to n_max. */
#include <stdio.h>
int main(void) {

int n_min, n_max; /* minimum and maximum values */
int inval, /* data value which user enters */

status; /* status value returned by scanf */
char skip_ch; /* character to skip */
int error; /* error flag for bad input */
printf("Enter minimum and maximum valid values> ");
scanf("%d%d", &n_min, &n_max);
do {

printf("Enter an integer in the range from %d to %d inclusive> ", 
n_min, n_max);

status = scanf("%d", &inval);
if (status == 1) {

error = 0;
} else {

error = 1;
scanf("%c", &skip_ch);
printf("\nInvalid character>>%c>> Skipping rest of line.\n", 

skip_ch);
do {

scanf("%c", &skip_ch);
}  while (skip_ch != '\n') ;

}
}  while (error || inval < n_min || inval > n_max) ;
/* Rest of Processing */

}

scanf returns 
how many 
values it 
actually read 
from user
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Flag Controlled Loops

• Sometimes a loop repetition condition becomes so complex 
that placing the full expression in its usual spot is awkward.

• In many cases, the condition may be simplified by using a 
flag.
while (flag)
{

….
}

• A flag is a type int variable used to represent whether or not 
a certain event has occurred.

• A flag has one of two values: 1 (true) and 0 (false).
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Flag Controlled Example
/* Gets a valid fraction */
int main(void) {

int num, den;        /* numerator, denominator of fraction */
char slash;           /* character between numerator and  denominator */
int status;          /* status code returned by scanf indicating number of valid values obtained */
int error;           /* flag indicating whether or not an error has been detected in current input */
char discard;         /* unprocessed character from input line */

do {
/* No errors detected yet */
error = 0;

/* Get a fraction from the user */
printf("Enter a common fraction as two integers separated by ");
printf("a slash\nand press <enter>\n> ");
status = scanf("%d%c%d", &num, &slash, &den);
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Flag Controlled Example
/* Validate the fraction */

if (status < 3) {
error = 1;
printf("Input invalid-please read directions carefully\n");

} else if (slash != '/') {
error = 1;
printf("Input invalid-separate numerator and denominator");
printf(" by a slash (/)\n");

} else if (den <= 0) {
error = 1;
printf("Input invalid-denominator must be positive\n");

}

/* Discard extra input characters */
do {

scanf("%c", &discard);
} while (discard != '\n');

} while (error);

/* Finish processing of fraction - code omitted */
}
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Hand Tracing the Code
• A critical step in program design is to verify that an 

algorithm or C statement is correct before you spend 
extensive time coding or debugging it.

• Often a few extra minutes spent in verifying the 
correctness of an algorithm saves hours of coding and 
testing time.

• A hand trace or desk check is a careful, step-by-step 
simulation on paper of how the computer executes the 
algorithm or statement.

• The results of this simulation should show the effect 
of each step’s execution using data that is relatively 
easy to process by hand.
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int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )
total = 3;

else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}     

Hand Trace

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}    

a b c d total a<b c>d &&

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2

&&

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

Output:

Given this code, 
what is the output?



41

Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

False

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4
False

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

True

Output:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so longOutput:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so longOutput:

Given this code, 
what is the output?
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Hand Trace int main ( void )
{

int a=3, b=4, c=5, d=6,total=2;
if( a<b  &&  c>d )

total = 3;
else
total = 4;

switch (total) {
case 2:

printf(“hello\n”);
break;

case 3:
printf(“good-bye\n”);
break;

default:
printf(“so long\n”);

}
}

a b c d total a<b c>d

3 4 5 6 2 T F

&&

F

4

so long

main exits

Output:

Given this code, 
what is the output?


