
1

ICS103 Programming in C

Lecture 6: Selection Structures

2

Outline

• Control Structures
• Conditions

Relational Operators
Logical Operators

• if statements
Two-Alternatives
One-Alternative
Nested If Statements

• switch Statement

3

Control Structures
• Control structures –control the flow of

execution in a program or function.
• Three basic control structures:

Sequential Flow - this is written as a group of
statements bracketed by { and }where one
statement follows another.
Selection control structure - this chooses
between multiple statements to execute based
on some condition.
Repetition – this structure executes a block of
code multiple times.

C
Y N

C
Y

N

4

Compound Statements

• A Compound statement or a Code Block is written
as a group of statements bracketed by { and } and is
used to specify sequential flow.
{

Statement_1;
Statement_2;
Statement_3;

}

Example: the main function is surrounded by {}, and its
statements are executed sequentially.
Function body also uses compound statement.

5

Conditions
• A program chooses among alternative statements by testing the

values of variables.
0 means false
Any non-zero integer means true, Usually, we’ll use 1 as
true.

if (a>=b)
printf(“a is larger”);

else
printf(“b is larger”);

• Condition - an expression that establishes a criterion for either
executing or skipping a group of statements

a>=b is a condition that determines which printf
statement we execute.

6

Relational and Equality Operators

• Most conditions that we use to perform
comparisons will have one of these forms:

variable relational-operator variable e.g. a < b
variable relational-operator constant e.g. a > 3
variable equality-operator variable e.g. a == b
variable equality-operator constant e.g. a != 10

7

Relational and Equality Operators

Operator Meaning Type

< less than relational

> greater than relational

<= less than or equal to relational

>= greater than or equal to relational

== equal to equality
!= not equal to equality

8

Logical Operators
• logical expressions - expressions that use conditional

statements and logical operators.
&& (and)

A && B is true if and only if both A and B are true
|| (or)

A || B is true if either A or B are true
! (not)

!(condition) is true if condition is false, and false if
condition is true

This is called the logical complement or negation
• Example

(salary < 10000) || (dependents > 5)
(temperature > 90.0) && (humidity > 90)
!(temperature > 90.0)

9

Truth Table && Operator

A B A && B

False (zero) False (zero) False (zero)

False (zero) True (non-zero) False (zero)

True (non-zero) False (zero) False (zero)

True (non-zero) True (non-zero) True (non-zero)

10

Truth Table || Operator

A B A || B

False (zero) False (zero) False (zero)

False (zero) True (non-zero) True (non-zero)

True (non-zero) False (zero) True (non-zero)

True (non-zero) True (non-zero) True (non-zero)

11

Operator Table ! Operator

A !A

False (zero) True (non-zero)

True (non-zero) False (zero)

12

Remember!

• && operator yields a true result only when
both its operands are true.

• || operator yields a false result only when both
its operands are false.

13

Operator Precedence

function calls
! + - & (unary operations)
*, /, %
+, -
<, >, <=, >=
==, !=
&&
||
=

• Operator’s precedence
determine the order of
execution. Use parenthesis to
clarify the meaning of
expression.

• Relational operator has higher
precedence than the logical
operators.

• Ex: followings are different.
(x<y || x<z) && (x>0.0)
x<y || x<z && x>0.0

14

Evaluation Tree and Step-by-Step Evaluation for
!flag || (y + z >= x - z)

15

Writing English Conditions in C

• Make sure your C condition is logically
equivalent to the English statement.

“x and y are greater than z”
(x > z) && (y > z) (valid)
x && y > z (invalid)

16

Character Comparison

• C allows character comparison using relational and
equality operators.

• During comparison Lexicographic (alphabetical)
order is followed. (See Appendix A for a complete
list of ASCII values).
‘9’ >= ‘0’ // True
‘a’ < ‘e’ // True
‘a’ <= ch && ch <= ‘z’ /* True if ch is a char type

variable that contains a
lower case letter.*/

17

Logical Assignment
• You can assign an int type variable a non zero value

for true or zero for false.
Ex: even = (n%2 == 0)

if (even) { do something }

• Some people prefer following for better readability.
#define FALSE 0
#define TRUE !FALSE
even = (n%2 == 0)

if (even == TRUE) { do something }

18

Complementing a condition

• We can complement a logical expression by preceding
it with the symbol !.

• We can also complement a single condition by
changing its operator.

Example : The complements of (age == 50) are
!(age == 50) , (age != 50)

The relational operator should change as follows
<= to >, < to >= and so on

19

DeMorgan’s Theorem
• DeMorgan’s theorem gives us a way of simplifying

logical expressions.
• The theorem states that the complement of a

conjunction is the disjunction of the complements
or vice versa. In C, the two theorems are
1. !(x || y) == !x && !y
2. !(x && y) == !x || !y
Example: If it is not the case that I am tall and thin, then I

am either short or fat (or both)
• The theorem can be extended to combinations of

more than two terms in the obvious way.

20

DeMorgan’s Theorem …
• DeMorgan’s Theorems are extremely useful in

simplifying expressions in which an AND/OR of
variables is inverted.

• A C programmer may use this to re-write
if (!a && !b) ...

as if(!(a || b) ...

Thus saving one operator per statement.

• Good, optimizing compiler should do the same
automatically and allow the programmer to use
whatever form seemed clear to them.

21

if statement : Two alternatives
if (condition)

{compound_statement_1 } // if condition is true
else

{ compound_statement_2 } // if condition is false

Example:

if (crash_test_rating_index <= MAX_SAFE_CTRI) {
printf("Car #%d: safe\n", auto_id);
safe = safe + 1;

}
else {

printf("Car #%d: unsafe\n", auto_id);
unsafe = unsafe + 1;

}

22

if statement : Two alternatives…
• When the symbol { follows a condition or else, the C

complier either executes or skips all statements
through the matching }

• In the example of the previous slide, if you omit the
braces enclosing the compound statements, the if
statement would end after the first printf call.

• The safe = safe + 1; statement would always
be executed.

• You MUST use braces if you want to execute a
compound statement in an if statement.

• To be safe, you may want to always use braces, even
if there is only a single statement.

23

No {}?
if (rest_heart_rate > 56)

printf("Keep up your exercise program!\n");
else

printf("Your heart is in excellent health!\n");

• If there is only one statement between the {} braces,
you can omit the braces.

24

One Alternative?

• You can also write the if statement with a
single alternative that executes only when the
condition is true.
if (a <= b)

statement_1;

25

Nested if Statements
• So far we have used if statements to code decisions with one

or two alternatives.
• A compound statement may contain more if statements.
• In this section we use nested if statements (one if statement

inside another) to code decisions with multiple alternatives.

if (x > 0)
num_pos = num_pos + 1;

else
if (x < 0)

num_neg = num_neg + 1;
else

num_zero = num_zero + 1;

26

Comparison of Nested if and
Sequences of ifs

• Beginning programmers sometime prefer to use a sequence of if
statements rather than a single nested if statement

if (x > 0)
num_pos = num_pos + 1;

if (x < 0)
num_neg = num_neg + 1;

if (x == 0)
num_zero = num_zero +1;

• This is less efficient because all three of the conditions are
always tested.

• In the nested if statement, only the first condition is tested when
x is positive.

27

Multiple-Alternative Decision Form of
Nested if

• Nested if statements can become quite complex. If there are more than
three alternatives and indentation is not consistent, it may be difficult for
you to determine the logical structure of the if statement.

• You can code the nested if as the multiple-alternative decision described
below:

if (condition_1)
statement_1

else if (condition_2)
statement_2
.
.
.

else if (condition_n)
statement_n

else
statement_e

28

Example
• Given a person’s salary, we want to calculate the tax due by

adding the base tax to the product of the percentage times the
excess salary over the minimum salary for that range.

Salary Range Base tax Percentage of Excess

0.00 – 14,999.99 0.00 15

15,000.00 – 29,999.99 2,250.00 18

30,000.00 – 49,999.99 5,400.00 22

50,000.00 – 79,999.99 11,000,00 27

80,000.00 – 150,000.00 21,600.00 33

29

if (salary < 0.0)
tax = -1.0;

else if (salary < 15000.00)
tax = 0.15 * salary;

else if (salary < 30000.00)
tax = (salary – 15000.00)*0.18 + 2250.00;

else if (salary < 50000.00)
tax = (salary – 30000.00)*0.22 + 5400.00;

else if (salary < 80000.00)
tax = (salary – 50000.00)*0.27 + 11000.00;

else if (salary <= 150000.00)
tax = (salary – 80000.00)*0.33 + 21600.00;

else
tax = -1.0;

30

Order of Conditions in a Multiple-
Alternative Decision

• When more than one condition in a multiple-
alternative decision is true, only the task following the
first true condition executes.

• Therefore, the order of the conditions can affect the
outcome.

• The order of conditions can also have an effect on
program efficiency.

• If we know that salary range 30,000 - 49,999 are much
more likely than the others, it would be more efficient
to test first for that salary range. For example,
if ((salary>30,000.00) && (salary<=49,999.00))

31

Nested if Statements with More Than One
Variable

• In most of our examples, we have used nested if
statements to test the value of a single variable.

• Consequently, we have been able to write each nested
if statement as a multiple-alternative decision.

• If several variables are involved in the decision, we
cannot always use a multiple-alternative decision.

• The next example contains a situation in which we
can use a nested if statement as a ”filter” to select
data that satisfies several different criteria.

32

Example

• The Department of Defense would like a program
that identifies single males between the ages of 18
and 26, inclusive.

• One way to do this is to use a nested if statement
whose conditions test the next criterion only if all
previous criteria tested were satisfied.

• Another way would be to combine all of the tests into
a single logical expression

• In the next nested if statement, the call to printf
executes only when all conditions are true.

33

Example
/* Print a message if all criteria are met.*/
if (marital_status == ’S’)

if (gender == ’M’)
if (age >= 18 && age <= 26)

printf("All criteria are met.\n");

• or we could use an equivalent statement that uses a single if
with a compound condition:

/* Print a message if all criteria are met.*/
if ((maritial_status == ’S’) && (gender == ’M’) &&

(age >= 18 && age <= 26))
printf("All criteria are met.\n");

34

Common if statement errors
if crsr_or_frgt == ’C’
printf("Cruiser\n");

• This error is that there are no () around the condition, and this
is a syntax error.

if (crsr_or_frgt == ’C’);
printf("Cruiser\n");

• This error is that there is a semicolon after the condition. C
will interpret this as there is nothing to do if the condition is
true.

35

If Statement Style

• All if statement examples in this lecture have the true
statements and false statements indented. Indentation
helps the reader but conveys no meaning to the
compiler.

• The word else is typed without indentation on a
separate line.

• This formatting of the if statement makes its meaning
more apparent and is used solely to improve program
readability.

36

Switch statements

• The switch statement is a better way of writing a
program when a series of if-else if occurs.

• The switch statement selects one of several
alternatives.

• The switch statement is especially useful when the
selection is based on the value of a single variable or
of a simple expression

This is called the controlling expression
• In C, the value of this expression may be of type int

or char, but not of type double.

37

Example of a switch Statement with Type char Case Labels
/* Determines the class of Ship given its class ID */
#include <stdio.h>
int main(void) {

char classID;

printf("Enter class id [a, b, c or d]: ");
scanf("%c", &classID);

switch (classID) {
case 'B':
case 'b':

printf("Battleship\n");
break;

case 'C':
case 'c':

printf("Cruiser\n");
break;

case 'D':
case 'd':

printf("Destroyer\n");
break;

case 'F':
case 'f':

printf("Frigate\n");
break;

default:
printf("Unknown ship class %c\n", classID);

}
 return 0;
}

38

Explanation of Example
• This takes the value of the variable class and compares it to

each of the cases in a top down approach.
• It stops after it finds the first case that is equal to the value of

the variable class.
• It then starts to execute each line of the code following the

matching case till it finds a break statement or the end of the
switch statement.

• If no case is equal to the value of class, then the default case
is executed.

default case is optional. So if no other case is equal to the value of the
controlling expression and there is a default case, then default case is
executed. If there is no default case, then the entire switch body is
skipped.

39

Remember !!!
• The statements following a case label may be one or more C

statements, so you do not need to make multiple statements
into a single compound statement using braces.

• You cannot use a string such as ”Cruiser” or ”Frigate” as a
case label.

It is important to remember that type int and char values may be
used as case labels, type double values cannot be used.

• Another very common error is the omission of the break
statement at the end of one alternative.

In such a situation, execution ”falls through” into the next alternative.
• Forgetting the closing brace of the switch statement body is

also easy to do.
• In the book it says that forgetting the last closing brace will

make all following statements occur in the default case, but
actually the code will not compile on most compilers.

40

Nested if versus switch

• Advantages of if:
It is more general than a switch

It can be a range of values such as x < 100
A switch can not compare doubles

• Advantages of switch:
A switch is more readable

• Use the switch whenever there are ten or fewer case
labels

41

Common Programming Errors
• Consider the statement:

if (0 <= x <= 4)
• This is always true!

First it does 0 <= x, which is true or false so it evaluates to 1 for true and 0 for
false
Then it takes that value, 0 or 1, and does 1 <= 4 or 0 <= 4
Both are always true

• In order to check a range use (0 <= x && x <= 4).

• Consider the statement:
if (x = 10)

• This is always true!
The = symbol assigns x the value of 10, so the conditional statement evaluates
to 10
Since 10 is nonzero this is true.
You must use == for comparison

42

More Common Errors

• Don’t forget to parenthesize the condition.
• Don’t forget the { and } if they are needed
• C matches each else with the closest unmatched if, so be

careful so that you get the correct pairings of if and else
statements.

• In switch statements, make sure the controlling expression and
case labels are of the same permitted type.

• Remember to include the default case for switch statements.
• Don’t forget your { and } for the switch statement.
• Don’t forget your break statements!!!

