
1

ICS103 Programming in C

Lecture 5: Introduction to Functions

2

Outline

• Introduction to Functions
• Predefined Functions and Code Reuse
• User-defined void Functions without Arguments

Function Prototypes
Function Definitions
Placement of Functions in a Program
Program Style

3

Introduction to Functions
• So far, we have learnt how to use operators, +, -, *, /

and % to form simple arithmetic expressions.
• However, we are not yet able to write many other

mathematical expressions we are used to.
• For example, we cannot yet represent any of the

following expressions in C:

• C does not have operators for “square root”,
“absolute value”, sine, log, etc.

• Instead, C provides program units called functions to
carry out these and other mathematical operations.

4

Introduction to Functions …
• A function can be thought of as a black box that takes one or

more input arguments and produces a single output value.

• For example, the following shows how to use the sqrt function
that is available in the standard math library:

y = sqrt (x);

• If x is 16, the function computes the square root of 16. The
result, 4, is then assigned to the variable y.

• The expression part of the assignment statement is called
function call.

• Another example is: z = 5.7 + sqrt (w);
If w = 9, z is assigned 5.7 + 3, which is 8.7.

5

Example
/* Performs three square root computations */
#include <stdio.h> /* definitions of printf, scanf */
#include <math.h> /* definition of sqrt */

int main(void) {
double first, second, /* input - two data values */

first_sqrt, /* output - square root of first input */
second_sqrt, /* output - square root of second input */
sum_sqrt; /* output - square root of sum */

printf("Enter a number> ");
scanf("%lf", &first);
first_sqrt = sqrt(first);
printf("Square root of the number is %.2f\n", first_sqrt);

printf("Enter a second number> ");
scanf("%lf", &second);
second_sqrt = sqrt(second);
printf("Square root of the second number is %.2f\n", second_sqrt);

sum_sqrt = sqrt(first + second);
printf("Square root of the sum of the 2 numbers is %.2f\n",sum_sqrt);
return (0);

}

6

Predefined Functions and Code Reuse
• The primary goal of software engineering is to

write error-free code.
• Reusing code that has already been written &

tested is one way to achieve this. --- ”Why
reinvent the wheel?”

• C promotes reuse by providing many
predefined functions. e.g.

Mathematical computations.
Input/Output: e.g. printf, scanf

7

Predefined Functions and Code Reuse …
• The next slide lists some commonly used mathematical

functions (Table 3.6 in the book)
• Appendix B gives a more extensive lists of standard library

functions.
• In order to use a function, you must use #include with the

appropriate library.
Example, to use function sqrt you must include math.h.

• If a functions is called with a numeric argument that is not of
the argument type listed, the argument value is converted to
the required type before it is used.

Conversion of type int to type double cause no problems
Conversion of type double to type int leads to the loss of any
fractional part.

• Make sure you look at documentation for the function so you
use it correctly.

8

Some Mathematical Library Functions
Function Header File Purpose Arguments Result

abs(x) <stdlib.h> Returns the absolute
value of its integer

argument x.

int int

sin(x),cos(x),
tan(x)

<math.h> Returns the sine, cosine,
or tangent of angle x.

double
(in radians)

double

log(x) <math.h> Returns the natural log of
x.

double (must be
positive)

double

Log10(x) <math.h> Returns base 10 log of x Double (positive) double

pow(x, y) <math.h> Returns xy double, double double

sqrt(x) <math.h> double (must be
positive)

doublex

9

Example
• We can use C functions pow and sqrt to compute the roots of a

quadratic equation in x of the form:

• If the discriminant (b2 – 4ac) is greater than zero, the two roots
are defined as:

• In C, these two roots are computed as:
/* compute two roots, root_1 and root_2, for disc > 0.0 */
disc = pow(b, 2) - 4 * a * c;
root_1 = (-b + sqrt(disc)) / (2 * a);
root_2 = (-b - sqrt(disc)) / (2 * a);

10

Simple User-defined Functions
• An advantage of using predefined functions is that the

programmer needs to be concerned only with what the function
does but not how it does it.

• In complex software systems, this principle of separating what
from the how is an important aspect of managing the complexity
of programs.

• C provides a mechanism for the programmer to define his own
functions with the same advantages as the C’s library functions.

• We now study the simplest type of user-defined functions –
those that display one or more lines of output.

• These are useful for tasks such as displaying instructions to the
user on how to use a program.

11

Example …
/* Performs three square root computations */
#include <stdio.h> /* definitions of printf, scanf */
#include <math.h> /* definition of sqrt */

void instruct (void); //displays user instruction

int main(void) {

double first, second, /* input - two data values */
first_sqrt, /* output - square root of first input */
second_sqrt, /* output - square root of second input */
sum_sqrt; /* output - square root of sum */

/* Display instrctions */
instruct();

printf("Enter a number> ");
scanf("%lf", &first);
first_sqrt = sqrt(first);
printf("Square root of the number is %.2f\n", first_sqrt);

// continue next slide …

12

Example
// continue from previous slide

printf("Enter a second number> ");
scanf("%lf", &second);
second_sqrt = sqrt(second);
printf("Square root of the second number is %.2f\n", second_sqrt);

sum_sqrt = sqrt(first + second);
printf("Square root of the sum of the 2 numbers is %.2f\n",sum_sqrt);
return (0);

} // end of main function

/* displays user instructions */
void instruct(void) {

printf("This program demostrates the use of the \n");
printf("math library function sqrt (square root). \n");
printf("you will be asked to enter two numbers -- \n");
printf("the program will display the square root of \n");
printf("each number and the square root of their sum. \n\n");

}

13

Function Prototypes
• Like other identifiers in C, a function must be declared

before it can be used in a program.
• To do this, you can add a function prototype before main

to tell the compiler what functions you are planning to use.
• A function prototype tells the C compiler:

1. The data type the function will return
– For example, the sqrt function returns a type of double.

2. The function name
3. Information about the arguments that the function

expects.
– The sqrt function expects a double argument.

• So the function prototype for sqrt would be:
double sqrt(double);

14

Function Prototypes : void Functions
• void instruct(void); is a void function

Void function - does not return a value
– The function just does something without

communicating anything back to its caller.
If the arguments are void as well, it means the function
doesn’t take any arguments.

• Now, we can understand what our main function means:

int main(void)

• This means that the function main takes no arguments, and
returns an int

15

Function Definition
• The prototype tells the compiler what arguments the function

takes and what it returns, but not what it does.
• We define our own functions just like we do the main

function
Function Header – The same as the prototype, except it is
not ended by the symbol ;
Function Body – A code block enclosed by {}, containing
variable declarations and executable statements.

• In the function body, we define what actually the function does
In this case, we call printf 5 times to display user
instructions.
Because it is a void function, we can omit the return
statement.

• Control returns to main after the instructions are displayed.

16

Placement of Functions in a program

• In general, we will declare all of our function
prototypes at the beginning (after #include or
#define)

• This is followed by the main function
• After that, we define all of our functions.
• However, this is just a convention.
• As long as a function’s prototype appears before it is

used, it doesn’t matter where in the file it is defined.
• The order we define them in does not have any impact

on how they are executed

17

Execution Order of Functions
• Execution order of functions is determined by the

order of execution of the function call statements.
• Because the prototypes for the function subprograms

appear before the main function, the compiler
processes the function prototypes before it translates
the main function.

• The information in each prototype enables the
compiler to correctly translate a call to that function.

• After compiling the main function, the compiler
translates each function subprogram.

• At the end of a function, control always returns to the
point where it was called.

18

Flow of Control Between the main Function
and a Function Subprogram

19

Program Style

• Each function should begin with a comment that
describes its purpose.

• If the function subprograms were more complex, we
would include comments on each major algorithm
step just as we do in function main.

• It is recommended that you put prototypes for all
functions at the top, and then define them all after
main.

