
1

ICS103 Programming in C

Lecture 4: Data Types, Operators &
Expressions

2

Outline
• C Arithmetic Expressions

Operators
Data Type of Expression
Mixed-Type Assignment Statement
Type Conversion through Cast
Expressions with Multiple Operators
Writing Mathematical Formulas in C

• Programming Style

3

Why Arithmetic Expressions

• To solve most programming problems, you will need
to write arithmetic expressions that manipulate type
int and double data.

• The next slide shows all arithmetic operators. Each
operator manipulates two operands, which may be
constants, variables, or other arithmetic expressions.

• Example
5 + 2
sum + (incr* 2)
(B/C) + (A + 0.5)

4

C Operators
Arithmetic Operator Meaning Examples

+ (int,double) Addition
5 + 2 is 7
5.0 + 2.0 is 7.0

- (int,double) Subtraction
5 - 2 is 3
5.0 - 2.0 is 3.0

* (int,double) Multiplication
5 * 2 is 10
5.0 * 2.0 is 10.0

/ (int,double) Division
5 / 2 is 2
5.0 / 2.0 is 2.5

% (int) Remainder 5 % 2 is 1

5

Operator / & %
• Division: When applied to two positive integers, the

division operator (/) computes the integral part of the
result by dividing its first operand by its second.

For example 7.0 / 2.0 is 3.5 but the but 7 / 2 is only 3
The reason for this is that C makes the answer be of the
same type as the operands.

• Remainder: The remainder operator (%) returns the
integer remainder of the result of dividing its first
operand by its second.

Examples: 7 % 2 = 1, 6 % 3 = 0
The value of m%n must always be less than the divisor n.
/ is undefined when the divisor (second operator) is 0.

6

Data Type of an Expression
• The data type of each variable must be specified in its

declaration, but how does C determine the data type
of an expression?

Example: What is the type of expression x+y when both x
and y are of type int?

• The data type of an expression depends on the type(s)
of its operands.

If both are of type int, then the expression is of type int.
If either one or both is of type double, then the
expression is of type double.

• An expressions that has operands of both int and
double is a mixed-type expression.

7

Mixed-Type Assignment Statement
• The expression being evaluated and the variable to

which it is assigned have different data types.
Example what is the type of the assignment y = 5/2
when y is of type double?

• When an assignment statement is executed, the
expression is first evaluated; then the result is
assigned to the variable to the left side of assignment
operator.

• Warning: assignment of a type double expression
to a type int variable causes the fractional part of
the expression to be lost.

What is the type of the assignment y = 5.0 / 2.0
when y is of type int?

8

Type Conversion Through Casts

• C allows the programmer to convert the type of an
expression.

• This is done by placing the desired type in
parentheses before the expression.

• This operation called a type cast.
(double)5 / (double)2 is the double value 2.5,
and not 2 as seen earlier.
(int)3.0 / (int)2.0 is the int value 1

• When casting from double to int, the decimal
portion is just truncated – not rounded.

9

Example
/* Computes a test average */
#include <stdio.h>

int main(void)
{

int total_score, num_students;
double average;
printf("Enter sum of students' scores> ");
scanf("%d", &total_score);
printf("Enter number of students> ");
scanf("%d", &num_students);
average = (double) total_score / (double) num_students;
printf("Average score is %.2f\n", average);
return (0);

}

10

Expressions with Multiple Operators

• Operators can be split into two types: unary and
binary.

• Unary operators take only one operand
- (negates the value it is applied to)

• Binary operators take two operands.
+,-,*,/

• A single expression could have multiple operators
-5 + 4 * 3 - 2

11

Rules for Evaluating Expressions
• Rule (a): Parentheses rule - All expressions in parentheses

must be evaluated separately.
Nested parenthesized expressions must be evaluated from the
inside out, with the innermost expression evaluated first.

• Rule (b): Operator precedence rule – Multiple operators in
the same expression are evaluated in the following order:

First: unary –
Second: *, /, %
Third: binary +,-

• Rule (c): Associativity rule
Unary operators in the same subexpression and at the same
precedence level are evaluated right to left
Binary operators in the same subexpression and at the same
precedence level are evaluated left to right.

12

Figure 2.8 Evaluation Tree for
area = PI * radius * radius;

13

Figure 2.11 Evaluation Tree and Evaluation for
z - (a + b / 2) + w * -y

with type int variables only

14

Writing Mathematical Formulas in C

• You may encounter two problems in writing a mathematical
formula in C.

• First, multiplication often can be implied in a formula by
writing two letters to be multiplied next to each other. In C,
you must state the * operator

For example, 2a should be written as 2 * a.

• Second, when dealing with division we often have:

This should be coded as (a + b) / (c + d).
dc
ba

+
+

15

Programming Style

• Why we need to follow conventions?
A program that ”looks good” is easier to read and
understand than one that is sloppy.
80% of the lifetime cost of a piece of software goes to
maintenance.
Hardly any software is maintained for its whole life by the
original author.
Programs that follow the typical conventions are more
readable and allow engineers to understand the code more
quickly and thoroughly.

• Check your text book and some useful links page for
some directions.

16

White Spaces

• The complier ignores extra blanks between words and
symbols, but you may insert space to improve the
readability and style of a program.

• You should always leave a blank space after a comma
and before and after operators such as , −, and =.

• You should indent the lines of code in the body of a
function.

17

White Space Examples

Bad: Good:

Int main(void)
{

int foo, blah;
scanf("%d", &foo);
blah = foo + 1;
printf("%d", blah);
return 0;

}

int main(void)
{ int foo,blah; scanf("%d",&foo);
blah=foo+1;
printf("%d", blah);
return 0;}

18

Other Styles Concerns

• Properly comment your code
• Give variables meaningful names
• Prompt the user when you want to input data
• Display things in a way that looks good

Insert new lines to make your information more
readable.
Format numbers in a way that makes sense for the
application

19

Bad Programming practices

• Missing statement of purpose
• Inadequate commenting
• Variables names are not meaningful
• Use of unnamed constant.
• Indentation does not represent program structure
• Algorithm is inefficient or difficult to follow
• Program does not compile
• Program produces incorrect results.
• Insufficient testing (e.g. Test case results are different than

expected, program branch never executed, borderline case not
tested etc.)

