
1

ICS103 Programming in C

Lecture 3: Introduction to C (2)

2

Outline
• Overview of C

History & Philosophy
Why C?
What’s Missing?

• General form of a C program
• C Language Elements

Preprocessor Directives
Comments
The “main” function
Variable Declarations and Data Types
Executable Statements
Reserved Words
Identifiers
Formatting Numbers in Program Output

3

Executable Statements
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

4

Executable Statements

• Executable Statements: C statements used to write or
code the algorithm. C compiler translates the
executable statements to machine code.

Input/Output Operations and Functions
•printf Function
•scanf Function

Assignment Statements
return Statement

5

Input/Output Operations and Functions

• Input operation - data transfer from the outside
world into computer memory

• Output operation - program results can be displayed
to the program user

• Input/output functions - special program units that
do all input/output operations

• printf = output function
• scanf = input function

• Function call - in C a function call is used to call or
activate a function

Calling a function means asking another piece of code to
do some work for you

6

The printf Function

function name

printf(“That equals %f kilometers.\n”,
kms);

function arguments

format
string

print
listplace holder

7

Placeholders
• Placeholder always begins with the symbol %

It marks the place in a format string where a value will be printed out or
will be inputed (in this case, kms)

• Format strings can have multiple placeholders, if you are
printing multiple values

Placeholder Variable Type Function Use
%c char printf/scanf

%d int printf/scanf

%f double printf

%lf double scanf

• newline escape sequence – ‘\n’ terminates the current
line

8

Displaying Prompts

• When input data is needed in an interactive
program, you should use the printf function
to display a prompting message, or prompt,
that tells the user what data to enter.

Printf(“Enter the distance in miles> “);

9

The scanf Function

scanf(“%lf”, &miles);

function name
function arguments

format string variable list

place holder

• When user inputs a
value, it is stored in
variable miles.

• The placeholder type
tells the function
what kind of data to
store into variable
miles.

• The & is the C address of operator. The & operator in front of
variable miles tells the scanf function the location of
variable miles in memory.

10

Fig 2.6: Scanning data line Bob
char letter_1, letter_2, letter_3;
….
Scanf(“%c%c%c”, &letter_1, &letter_2, &letter_3);

11

Assignment Statements

• Assignment statement - Stores a value or a
computational result in a variable

kms = KMS_PER_MILE * miles;

• The assignment statement above assigns a value to
the variable kms. The value assigned is the result of
the multiplication of the constant KMS_PER_MILE
by the variable miles.

12

Figure 2.3 Effect of kms = KMS_PER_MILE
* miles;

13

Figure 2.2 Memory(a) Before and (b) After
Execution of a Program

14

More on Assignments
• In C the symbol = is the assignment operator

Read it as ”becomes”, ”gets”, or ”takes the value of” rather than
”equals” because it is not equivalent to the equal sign of mathematics.
In C, == tests equality.

• In C you can write assignment statements of the form:
sum = sum + item;

where the variable sum appears on both sides of the
assignment operator.
This is obviously not an algebraic equation, but it illustrates a
common programming practice. This statement instructs the
computer to add the current value of sum to the value of
item; the result is then stored back into sum.

15

return Statement

return (0);

• Transfers control from your program to the operating system.
• return (0) returns a 0 to the Operating System and

indicates that the program executed without error.
• It does not mean the program did what it was suppose to do. It

only means there were no syntax errors. There still may have
been logical errors.

• Once you start writing your own functions, you’ll use the
return statement to return information to the caller of the
function.

16

Reserved Words
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

17

Reserved words

• A word that has special meaning to C and can not be
used for other purposes.

• These are words that C reserves for its own uses
(declaring variables, control flow, etc.)

For example, you couldn’t have a variable named
return

• Always lower case
• Appendix H has a list of them all (ex: double,
int, if , else, ...)

18

Identifiers
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

19

Standard Identifiers

• Identifier - A name given to a variable or an
operation

In other words, Function names and Variable names

• Standard Identifier - An identifier that is defined in
the standard C libraries and has special meaning in C.

Example: printf, scanf
Standard identifiers are not like reserved words; you could
redefine them if you want to. But it is not recommended.

• For example, if you create your own function called printf, then
you may not be able to access the library version of printf.

20

User Defined Identifiers
• We choose our own identifiers to name memory cells that will

hold data and program results and to name operations that we
define (more on this in Chapter 3).

• Rules for Naming Identifiers:
An identifier must consist only of letters, digits, and
underscores.
An identifier cannot begin with a digit.
A C reserved word cannot be used as an identifier.
A standard identifier should not be redefined.

• Valid identifiers: letter1, inches, KM_PER_MILE
• Invalid identifiers: 1letter, Happy*trout, return

21

Few Guidelines for Naming Identifiers

• Some compliers will only see the first 31 characters of the
identifier name, so avoid longer identifiers

• Uppercase and lowercase are different
LETTER != Letter != letter
Avoid names that only differ by case; they can lead to problems to find
bugs

• Choose meaningful identifiers that are easy to understand.
Example: distance = rate * time means a lot more
than x=y*z

• All uppercase is usually used for constant macros (#define)
KMS_PER_MILE is a defined constant
As a variable, we would probably name it KmsPerMile or
Kms_Per_Mile

22

Punctuation and Special Symbols
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

23

Punctuation and Special Symbols

• Semicolons (;) – Mark the end of a statement
• Curly Braces ({,}) – Mark the beginning and

end of the main function
• Mathematical Symbols (*,=) – Are used to

assign and compute values

24

Formatting Numbers in Program Output (for integers)

• You can specify how printf will display numeric values
• Use d for integers. %#d

% - start of placeholder
- field width (optional) – the number of columns to
use to display the output.
d - placeholder for integers

int n = 123;
printf("%1d\n", n);
printf("%3d\n", n);
printf("%4d\n", n);

123
123

123

25

Formatting Numbers in Program Output (for double)

• Use %n.mf for double
% - start of placeholder
n - field width (optional)
m – Number of decimal places (optional)
f - placeholder for real numbers

double n = 123.456;
printf("%8.0f\n", n);
printf("%8.2f\n", n);
printf("%8.3f\n", n);
printf("%8.4f\n", n);
Printf("%.2f\n", n);

123
123.46

123.456
123.4560
123.46

