
1

ICS103 Programming in C

Lecture 2: Introduction to C (1)

2

Outline
• Overview of C

History & Philosophy
Why C?
What’s Missing?

• General form of a C program
• C Language Elements

Preprocessor Directives
Comments
The “main” function
Variable Declarations and Data Types
Executable Statements
Reserved Words
Identifiers

3

History & Philosophy

• C is developed in 1972 by Dennis Ritchie at the
AT&T Bell Laboratories for use with the Unix.

• The most commonly used programming language for
writing system software.

• Machine independent: by minimal change in source
code, can be compiled in a wide variety of platform
and operating system.

4

Why C?
• Many, many companies/research projects do all their

programming in C.
• Looks good on your resume.
• Small, compact code.
• Produces optimized programs that run faster.
• Low-level access to computer memory via machine

addresses and pointers.
• Low level (BitWise) programming readily available.
• Can be compiled on a variety of computers.

5

What’s Missing?

• Poor error detection which can make it difficult to use
for the beginner

No automatic garbage collection.
No bounds checking of arrays and allocated memory
segments.
No exception handling.

• No native support for multithreading and networking,
though these facilities are provided by popular
libraries

• No standard libraries for graphics and several other
application programming needs

6

A Simple, Example C Program
/* helloworld.c */

#include <stdio.h>
int main(void) {
printf("Hello World!\n");
return(0);

}

• Every C program has a main function.
• printf is also the name of a function
• This program can use the printf function, because

of the line #include <stdio.h> in the source
code.

7

General Form of a C program
• Preprocessor directives are

instructions to C Preprocessor
to modify The text of a C
program before compilation.

• Every variable has to be
declared first.

• Executable statements are translated into machine language and
eventually executed.

• Executable statements perform computations on the declared
variables or input/output operations.

8

Preprocessor Directives
/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

9

Preprocessor Directives

• Preprocessor directives are commands that give
instructions to the C preprocessor.

• Preprocessor is a system program that modifies a C
program prior to its compilation.

• Preprocessor directives begins with a #
Example. #include or #define

10

#include
• #include is used to include other source files into

your source file.
• The #include directive gives a program access to a

library.
• Libraries are useful functions and symbols that are

predefined by the C language (standard libraries).
Example: You must include stdio.h if you want to use
the printf and scanf library functions.
include<stdio.h> insert their definitions to your
program before compilation.

11

#define
• The #define directive instructs the preprocessor to

replace each occurrence of a text by a particular
constant value before compilation.

• #define replaces all occurrences of the text you
specify with value you specify

Example:
#define KMS_PER_MILES 1.60
#define PI 3.14159

12

Comments
/* Converts distances from miles to kilometers */

#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */

int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;

//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

13

Comments
• Comments provide supplementary information making it

easier for us to understand the program, but are ignored by the
C compiler.

• Two forms of comments:
/* */ - anything between them with be considered a comment, even if
they span multiple lines.
// - anything after this and before the end of the line is considered a
comment.

• Comments are used to create Program Documentation
Information that help others read and understand the program.

• The start of the program should consist of a comment that
includes programmer’s name, date of the current version, and a
brief description of what the program does.

• Always Comment your Code!

14

The “main” Function
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

15

The “main” Function

• The heading int main(void) marks the beginning of the
main function where program execution begins.

• Every C program has a main function.
• Braces ({,}) mark the beginning and end of the body of

function main.
• A function body has two parts:

declarations - tell the compiler what memory cells are
needed in the function
executable statements - (derived from the algorithm) are
translated into machine language and later executed by the
compiler.

16

Variables and Data Types
/* Converts distances from miles to kilometers */
#include <stdio.h> /* printf, scanf definitions */
#define KMS_PER_MILE 1.609 /* conversion constant */
int main(void)
{

double miles, //distance in miles
kms; //equivalent distance in kilometers

//Get the distance in miles
printf("Enter the distance in miles> ");
scanf("%lf", &miles);

//Convert the distance to kilometers
kms = KMS_PER_MILE * miles;
//Display the distance in kilometers
printf("That equals %f kilometers.\n", kms);

return (0);
}

17

Variables Declarations
• Variable – The memory cell used for storing a

program’s data and its computational results
Variable’s value can change.
Example: miles, kms

• Variable declarations –Statements that communicates
to the compiler the names of variables in the program
and the kind of information they can store.

Example: double miles
• Tells the compiler to create space for a variable of type
double in memory with the name miles.

C requires you to declare every variable used in the program.

18

Data Types
• Data Types: a set of values and a set of operations that

can be performed on those values
int: Stores integer values – whole numbers

• 65, -12345
double: Stores real numbers – numbers that use a decimal
point.

• 3.14159 or 1.23e5 (which equals 123000.0)
char: An individual character value.

• Each char value is enclosed in single quotes. E.g. ‘A’, ‘*’.
• Can be a letter, a digit, or a special symbol

Arithmetic operations (+, -, *, /) and compare can be
performed in case of int and double. Compare can be
performed in char data.

