
ICS103 Programming in C

Lecture 1: Overview of Computers
& Programming

2

Outline

• Overview of Computers
Hardware
Software

• Computer Languages
• Software Development Method
• Pseudo Code and Flowcharts

3

Computers
• Computers receive, store, process, and output

information.
• Computer can deal with numbers, text, images,

graphics, and sound.
• Computers are worthless without programming.
• Programming Languages allow us to write programs

that tells the computer what to do and thus provides a
way to communicate with computers.

• Programs are then converted to machine language (0
and 1) so the computer can understand it.

4

Hardware & Software

• Hardware is the equipment used to perform the
necessary computations.

i.e. CPU, monitor, keyboard, mouse, printer,
speakers etc.

• Software consists of the programs that enable
us to solve problems with a computer by
providing it with a list of instructions to follow

i.e. Word, Internet Explorer, Linux, Windows etc.

5

Computer Hardware
• Main Memory

RAM - Random Access Memory - Memory that can be accessed
in any order (as opposed to sequential access memory), volatile.
ROM - Read Only Memory - Memory that cannot be written to,
no-volatile.

• Secondary Memory - Hard disks, floppy disks, zip disks, CDs
and DVDs.

• Central Processing Unit - Coordinates all computer operations
and perform arithmetic and logical operations on data.

• Input/Output Devices - Monitor, printer, keyboard, & mouse.
• Computer Networks – Computers that are linked together can

communicate with each other. WAN, LAN, MAN, Wireless-
LAN.

6

Components of a Computer

7

Memory

• Memory Cell (MC) – An individual storage location in
memory.

• Address of a MC- the relative position of a memory cell in the
main memory.

• Content of a MC – Information stored in the memory cell. e.g
Program instructions or data.

Every memory cell has content, whether we know it or not.
• Bit – The name comes from binary digit. It is either a 0 or 1.
• Byte - A memory cell is actually a grouping of smaller units

called bytes. A byte is made up of 8 bits.
This is about the amount of storage required to store a single character,
such as the letter H.

8

1000 memory cells in Main memory

9

Computer Software

• Operating System - controls the interaction between
machine and user. Example: Windows, Unix, Dos
etc.

Communicate with computer user.
Manage memory.
Collect input/Display output.
Read/Write data.

• Application Software - developed to assist a
computer user in accomplishing specific tasks.
Example: Word, Excel, Internet Explorer.

10

Computer Languages
• Machine Language – A collection of binary numbers

Not standardized. There is a different machine language for
every processor family.

• Assembly Language - mnemonic codes that
corresponds to machine language instructions.

Low level: Very close to the actual machine language.
• High-level Languages - Combine algebraic expressions

and symbols from English
High Level : Very far away from the actual machine
language
For example: Fortran, Cobol, C, Prolog, Pascal, C#, Perl,
Java.

11

Example of Computer Languages
char name[40];
printf("Please enter your name\n");
scanf("%s", name);
printf("Hello %s", name);

push offset string "Please enter your name\n"
(41364Ch)
call dword ptr [__imp__printf (415194h)]
add esp,4
lea eax,[name]
push eax
push offset string "%s" (413648h)
call dword ptr [__imp__scanf (41519Ch)]
add esp,8
lea eax,[name]
push eax
push offset string "Hello %s" (41363Ch)
call dword ptr [__imp__printf (415194h)]
add esp,8

68 4C 36 41 00 FF 15 94 51 41 00 83 C4 04 8D 45 D8
50 68 48 36 41 00 FF 15 9C 51 41 00 83 C4 08 8D 45
D8 50 68 3C 36 41 00 FF 15 94 51 41 00 83 C4 08

C Source Code:

Assembly Code:

Machine Code:

12

Compiler
• Compilation is the process of translating the source code

(high-level) into executable code (machine level).
• Source file - A file containing the program code

A Compiler turns the Source File into an Object File
• Object file - a file containing machine language instructions

A Linker turns the Object File into an Executable
• Integrated Development Environment (IDE) - a program that

combines simple word processing with a compiler, linker,
loader, and often other development tools

For example, Eclipse or Visual Studio

13

Fig 1.12
Entering,
Translating,
and Running
a High-Level
Language
Program

14

Flow of Information During Program
Execution

15

Software Development Method

1. Specify problem requirements
2. Analyze the problem
3. Design the algorithm to solve the problem
4. Implement the algorithm
5. Test and verify the completed program
6. Maintain and update the program

16

Steps Defined
1. Problem - Specifying the problem requirements forces you to

understand the problem more clearly.
2. Analysis - Analyzing the problem involves identifying the

problem’s inputs, outputs, and additional requirements.
3. Design - Designing the algorithm to solve the problem

requires you to develop a list of steps called an algorithm that
solves the problem and then to verify the steps.

4. Implementation - Implementing is writing the algorithm as a
program.

5. Testing - Testing requires verifying that the program actually
works as desired.

6. Maintenance - Maintaining involves finding previously
undetected errors and keep it up-to-date.

17

Converting Miles to Kilometers

1. Problem: Your boss wants you to convert a list of
miles to kilometers. Since you like programming,
so you decide to write a program to do the job.

2. Analysis
• We need to get miles as input
• We need to output kilometers
• We know 1 mile = 1.609 kilometers

3. Design
1. Get distance in miles
2. Convert to kilometers
3. Display kilometers

18

4. Implementation

19

Miles to Kilometers cont’d

5. Test
We need to test the previous program to make
sure it works. To test we run our program and
enter different values and make sure the output is
correct.

6. Maintenance
Next time, your boss gets a contract with NASA,
so he wants you to add support for converting to
AU’s

20

Pseudo code & Flowchart

• Pseudo code - A combination of English phrases and
language constructs to describe algorithm steps

• Flowchart - A diagram that shows the step-by-step
execution of a program.

• Algorithm - A list of steps for solving a problem.

21

Why use pseudo code?
• Pseudo code cannot be compiled nor executed, and there are no

real formatting or syntax rules.
• It is simply one step - an important one - in producing the final

code.
• The benefit of pseudo code is that it enables the programmer to

concentrate on the algorithms without worrying about all the
syntactic details of a particular programming language.

• In fact, you can write pseudo code without even knowing what
programming language you will use for the final implementation.

• Example:
Input Miles
Kilometers = Miles * 1.609
Output Kilometers

22

Another Example of Pseudo code

• Problem: Calculate your final grade for ICS 103
• Specify the problem - Get different grades and then compute

the final grade.
• Analyze the problem - We need to input grades for exams,

labs, quizzes and the percentage each part counts for. Then
we need to output the final grade.

• Design
1. Get the grades: quizzes, exams, and labs.
2. Grade = .30 * 2 regular exams & quizzes + .20 * Final exam + .50 *

labs
3. Output the Grade

• Implement – Try to put some imaginary number and calculate
the final grade after you learn how to program.

23

Flowcharts
Flowchart uses boxes and arrows to show step by step
execution of a program.

Process Start or Terminal

Decision Document

Display Manual Input

24

Example of a Flowchart

Start

Get Grades and
percentages

Calculate
Final grade

Display
Grade

End

