Chapter 30
Agile Requirements Methods

Mitigating Requirements Risk

The entire requirements discipline within
the software lifecycle exists for only one

reason.:
® To mitigate the risk that requirements-related

Issues will prevent a successful project
outcome.

If there were no such risks, then it would
be far more efficient to go straight to code
and eliminate the overhead of
requirements-related activities.

Requirements Techniques and the
Specific Project Risks They Address

Technique

Risk Addressed

Interviewing

The development team might not understand who the real stakeholders are,

The team might not understand the basic needs of one ar more stakeholders,

Requirements warkshops

The system might not appropriately address classes of specific user needs,

Lack of consensus among key stakeholders might prevent convergence on a set of
requirements,

Brainstorming and idea
reduction

The team might naot discover key needs or prospective innavative features.

Priorities are not well established, and a plethora of features obscures the fundamental
"must haves."

Storyboards

The prospective implementation misses the mark.

The approach is too hard to use ar understand, or the aperation's business purpose is lost in
the planned implementation.

Requirements Techniques and the

Specific Project Risks They Address

lJse cases

o Users might not feel they have a stake in the implementation process,

o Implementation fails to fulfill basic users needs in some way because some features are
miszing ar because of paor usability, paar error and exception handling, and so on.

Vision document

« The development team members do not really understand what system they are trying to
build, or what user needs or industry problem it addresses,

o Lack of longer-term vision causes poor planning and poar architecture and design decisions,

Whole praduct plan

« The solution might lack the commercial elements necessary for successful adoption,

Scoping activities

» The project scope exceeds the time and resources available,

Supplementary
specification

» The development team might not understand nanfunctional requirements: platfarms,
reliability, standards, and =0 on,

Requirements Techniques and the

Specific Project Risks They Address

Tracing use cases to o Use cases might be described but not fully implemented in the system,
Implementation

Tracing use cases to 185t o Some use cases might not be tested, ar altemative and exception conditions might nat be
Cases understood, implemented, and tested.

Requirements traceabilty o Critical requirements might be overloaked in the implementation,

+ The implementation might introduce requirements or features not called for in the anginal
requirements,

» 4 change in requirements might impact other parts of the system in unforeseen ways.,

Change management o New system requirements might be introduced in an uncontralled fashion, The team might
underestimate the negative impact of a change,

Documenting Requirements

Most requirements artifacts, Vision documents,
use cases, and so forth—and indeed software
development artifacts in general, including the
code—require documentation of some kind.

Documenting Requirements

Do we really need to write this document at all?
"Yes" only if one or more of these four criteria

apply.

1.

The document communicates an important
understanding or agreement for instances in which
simpler verbal communication is either impractical.

The documentation allows new team members to
come up to speed more quickly and therefore renders
both current and new team members more efficient.

Investment in the document has an obvious long-
term payoff because it will evolve, be maintained, and
persist as an ongoing part of the development,
testing, or maintenance activity.

Some company, customer, or regulatory standard
Imposes a requirement for the document.

Agile Requirements Methods

Extreme
Agile
RoObUST

Extreme Programming
Principles/Characteristics

The scope of the application or component
permits coding by a team of three to ten
programmers working at one location.

One or more customers are on site to provide
constant requirements input.

Development occurs in frequent builds or
iterations, each of which is releasable and
delivers incremental user functionality.

The unit of requirements gathering is the user
story, a chunk of functionality that provides value
to the user. User stories are written by the
customers on site.

Extreme Programming
Principles/Characteristics

Programmers work in pairs and follow strict
coding standards. They do their own unit testing
and are supposed to routinely re-factor the code
to keep the design simple.

Since little attempt is made to understand or
document future requirements, the code is
constantly refactored (redesigned) to address
changing user needs.

Applying Extreme Programming Principles
to Requirements Risk Mitigation

Extreme Programming Principle Mitigated Requirements Risk

Application or companent scope 1s such that Constant informal communication can minimize ar eliminate much requirements
three to ten programmers at one location documentation,
can da the coding.

One or more custamers arg on site to Constant customer input and feedback dramatically reduces requirements-
pravide constant requirements input, related risk,

Development occurs in frequent bullds or - Customer value feedback 1s almost immediate; this ship can't go too far off
terations, each of which is releasable and — course,
delivers incremental user functionality,

The unit of requirements gatherng is the A use case describes sequences of events that deliver value to a user, as
user story, a bite of functionality that written by the developer with user input, User stonies are often shart

orovides valug to the user, Customers on descriptions of a path or scenano of a use case. Each captures the same basic
site write user stores, intent—how the user interacts with the system to get something dane.

Extreme Programming
Principles/Characteristics

Concepts: user elaboration
Vision: verbal
Requirements: use-case model

Tool Support: Defect tracking, desktop
tools

Agile Requirements Methods

Concepts: user elaboration, interviews,
workshops

Vision: verbal, Delta vision document, Whole
product plan

Requirements: use-case model, use-case
specifications, supplementary specifications

Tool Support: Defect tracking, desktop tools,
version control, requirements management
tools

Robust Requirements Methods

Concepts: user elaboration, interviews, workshops,
storyboards prototypes

Vision: verbal, Delta, vision document, Whole
product plan, fully documented

Requirements: use-case model, use-case
specifications, supplementary specifications,
technical methods as necessary

Tool Support: Defect tracking, desktop tools, version
control, requirements management tools,
requirements traceability, analysis and design tools,

Project control: requirements management plan,
change control board, full configuration
management, requirement analysis impact
assessment

Key Points

The purpose of the software development
method iIs to mitigate the risks inherent In
the project.

The purpose of the requirements
management method Is to mitigate
requirements-related risks on the project.

No one method fits all projects, therefore
the method must be tailored to the
particular project.

