
Chapter 30
Agile Requirements Methods



Mitigating Requirements Risk 
The entire requirements discipline within 
the software lifecycle exists for only one 
reason:

To mitigate the risk that requirements-related 
issues will prevent a successful project 
outcome. 

If there were no such risks, then it would 
be far more efficient to go straight to code 
and eliminate the overhead of 
requirements-related activities.



Requirements Techniques and the 
Specific Project Risks They Address 



Requirements Techniques and the 
Specific Project Risks They Address



Requirements Techniques and the 
Specific Project Risks They Address



Documenting Requirements
Most requirements artifacts, Vision documents, 
use cases, and so forth—and indeed software 
development artifacts in general, including the 
code—require documentation of some kind. 



Documenting Requirements
Do we really need to write this document at all? 
"Yes" only if one or more of these four criteria 
apply.
1. The document communicates an important 

understanding or agreement for instances in which 
simpler verbal communication is either impractical.

2. The documentation allows new team members to 
come up to speed more quickly and therefore renders 
both current and new team members more efficient. 

3. Investment in the document has an obvious long-
term payoff because it will evolve, be maintained, and 
persist as an ongoing part of the development, 
testing, or maintenance activity. 

4. Some company, customer, or regulatory standard 
imposes a requirement for the document.



Agile Requirements Methods
Extreme
Agile
Robust



Extreme Programming 
Principles/Characteristics

The scope of the application or component 
permits coding by a team of three to ten 
programmers working at one location.
One or more customers are on site to provide 
constant requirements input.
Development occurs in frequent builds or 
iterations, each of which is releasable and 
delivers incremental user functionality.
The unit of requirements gathering is the user 
story, a chunk of functionality that provides value 
to the user. User stories are written by the 
customers on site.



Extreme Programming 
Principles/Characteristics

Programmers work in pairs and follow strict 
coding standards. They do their own unit testing 
and are supposed to routinely re-factor the code 
to keep the design simple.
Since little attempt is made to understand or 
document future requirements, the code is 
constantly refactored (redesigned) to address 
changing user needs.



Applying Extreme Programming Principles 
to Requirements Risk Mitigation 



Extreme Programming 
Principles/Characteristics

Concepts: user elaboration
Vision: verbal
Requirements: use-case model
Tool Support: Defect tracking, desktop 
tools



Agile Requirements Methods
Concepts: user elaboration, interviews, 
workshops
Vision: verbal, Delta vision document, Whole 
product plan
Requirements: use-case model, use-case 
specifications, supplementary specifications
Tool Support: Defect tracking, desktop tools,
version control, requirements management 
tools



Robust Requirements Methods
Concepts: user elaboration, interviews, workshops, 
storyboards prototypes
Vision: verbal, Delta, vision document, Whole 
product plan, fully documented
Requirements: use-case model, use-case 
specifications, supplementary specifications, 
technical methods as necessary
Tool Support: Defect tracking, desktop tools, version 
control, requirements management tools, 
requirements traceability, analysis and design tools,
Project control: requirements management plan, 
change control board, full configuration 
management, requirement analysis impact 
assessment



Key Points
The purpose of the software development 
method is to mitigate the risks inherent in 
the project.
The purpose of the requirements 
management method is to mitigate 
requirements-related risks on the project.
No one method fits all projects, therefore 
the method must be tailored to the 
particular project.


