
1

Chapter 3

Requirements and the Software 
Lifecycle

The traditional software process models
• Waterfall model
• Spiral model

The iterative approach



2

Any Good Software Development 
Process should have

Collect + Analysis:
Identify what the system should do

Design:
Determine what is the best way to do it

Implementation + Test:
Build the system correctly



3

Traditional Software Process Models
Effective requirements management can occur 
only within the context of a reasonably well-
defined software process that defines the full set 
of activities your team must execute to deliver the 
final software product. 
In order for your team to reach its goal, your 
team's software development process should 
define who is doing what, when and how.



4

The Waterfall Model 
The waterfall model is sequential:
• Software activities proceed logically through a

sequence of steps. 
• Each step bases its work on the activities of the 

previous step. 
The waterfall model was widely followed in the 
1970s and '80s and served successfully as a 
process model for a variety of medium- to large-
scale projects. 



5

The Waterfall Model (Royce 1970)



6

The Waterfall Model
1. Collect major requirements (hardware, 

software & human parts), define clearly, and 
document them. 

2. Design & plan how to meet the req.
3. Code the system and test units, 
4. Link all parts, install and test as a whole
5. Corrective, adaptive & perfective 

maintenance



7

Waterfall Model Problems
Inflexible partitioning of the project into distinct 
stages makes it difficult to respond to changes in 
customer requirements.
Therefore, this model is only appropriate when
• the requirements are well-understood and 
• changes will be fairly limited during the design process. 

Long process and no intermediate builds, but
• Stakeholders need to gain confidence
• Designers and developers need confirmation that they are 

building what is needed and wanted.
Some team members are idle (because they are not 
involved in the current development phase)
• We need to put people to work on several phases at once



8

Incremental Development

Notice that
Successful large system is originally 

successful small project that grows 
incrementally.
Two incremental models:
• Spiral Model
• Iterative approach



9

Prototyping

Prototype is a system or partially complete 
system that is built quickly to operate some 
aspects of the requirements.
Thus, it may have poor performance, less 
functionality, limited data processing 
capacity, and low quality. 



10

The Spiral Model (Boehm, 88)



11

Spiral Model’s 4 Sectors
1. Objectives setting: specific objectives for the 

phase are identified.
2. Risk assessment and reduction: risks are assessed 

and activities put in place to reduce the key risks.
3. Development and validation: a development model 

for the system is chosen which can be any of the 
generic models.

4. Planning: the project is reviewed and the next 
phase of the spiral is planned.



12

The Spiral Model’s properties
Risk-driven and incremental development process 
Process is represented as a spiral rather than as a 
sequence of activities with backtracking.
Each loop in the spiral represents a phase in the process. 
No fixed phases such as specification or design
loops in the spiral are chosen depending on what is 

required.
Risks are explicitly assessed and resolved throughout the 
process.
The main advantage of this process model is the 
availability of multiple feedback opportunities with the 
users and customers.



13

The Iterative Approach (Kruchten, 95)

In the iterative approach, the lifecycle 
phases are decoupled from the logical 
software activities that occur in each phase, 
allowing us to revisit various activities, such 
as requirements, design, and 
implementation, during various iterations of 
the project. 



14

The Iterative Approach: Lifecycle Phases

It has 4 phases
1. Inception: scope & purpose of project
2. Elaboration: analysis of the req. and the 

structure of the system
3. Construction: writing the code
4. Transition: installing the system



15

The Iterative Approach: 
Lifecycle Phases

1.Inception phase
• The team is focused on understanding the business 

case for the project, the scope of the project, and 
the feasibility of an implementation.

• Problem analysis is performed, the vision for the 
solution is created, and preliminary estimates of 
schedule and budget, as well as project risk factors, 
are defined.



16

The Iterative Approach: 
Lifecycle Phases

2. Elaboration phase
• The requirements for the system are refined, 

an initial, perhaps even executable, 
architecture is established, and an early 
feasibility prototype is typically developed 
and demonstrated.



17

The Iterative Approach: 
Lifecycle Phases

3.Construction phase
• The focus is on implementation. 
• Most of the coding is done in this phase, and 

the architecture and design are fully developed.



18

The Iterative Approach: 
Lifecycle Phases

4. Transition phase
• Beta testing
• The users and maintainers of the system are 

trained on the application.
• The tested baseline of the application is 

transitioned to the user community and 
deployed for use.



19

The Iterative Approach: Iterations



20

The Iterative Approach: Iterations

Within each phase, the project typically 
undergoes multiple iterations. 
An iteration is a sequence of activities with an 
established plan and evaluation criteria, resulting 
in an executable of some type.
Each iteration builds on the functionality of the 
prior iteration; thus, the project is developed in 
an "iterative and incremental" fashion.



21

The Iterative Approach: Disciplines



22

The Iterative Approach: Disciplines

In the iterative approach, the activities associated 
with the development of the software are 
organized into a set of disciplines. 
Each discipline consists of a logically related set 
of activities, and each defines how the activities 
must be sequenced to produce a viable work 
product (or artifact).
Although the number and kind of disciplines can 
vary, based on the company or project 
circumstances, there are typically at least six 
disciplines.



23

The Iterative Approach: Disciplines
During each iteration, the team spends as much time as 
appropriate in each discipline.
• Thus, an iteration can be regarded as a mini-waterfall through 

the activities of requirements, analysis and design, and so on, 
but each mini-waterfall is "tuned" to the specific needs of that 
iteration. 

The size of the "hump" indicates the relative amount of 
effort invested in a discipline.
• For example, in the elaboration phase, significant time is spent

on "refining" the requirements and in defining the architecture 
that will support the functionality. 

The activities can be sequential (a true mini-waterfall) or 
may execute concurrently, as is appropriate to the project.



24

Requirements in the Iterative Model
From the requirements management 
perspective, the iterative approach provides 
two major advantages:
1.Better adaptability to requirements change. 
2.Better scope management. 



25

Key Points
The team's development process defines who is doing 
what, when, and how.
In the waterfall model, software activities proceeded 
through a sequence of steps, and requirements were 
"fixed" early.
In the spiral model, the first steps were taken to a more 
risk-driven and incremental approach to development.
The iterative approach, a hybrid of the waterfall and spiral 
models, decouples the lifecycle phases from the software 
activities that take place in each phase.
The iterative model is a more robust model and provides 
for successive refinement of the requirements over time.


