
Recall The Team Skills
1. Analyzing the Problem
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope
5. Refining the System Definition
6. Building the Right System

From Use Cases to Implementation
From Use Cases to Test Cases
Tracing Requirements
Managing Change
Assessing Requirements Quality

Chapter 28
Managing Change

Why Do Requirements Change?
A requirements management process can be
useful only if it recognizes and addresses the
issue of change.
There are several reasons for the inevitability
of changes to the requirements.

Some of these reasons are internal factors and
may be under our control
But many of them are external factors and are
outside the control of the developers and the users

External Factors
External factors are those change agents over which the
project team has little or no control.
Changes occur because of :

a change to the problem we attempting to solve
the identity of the users changed
The users changed their minds or their perceptions about what
they wanted the system to do
The external environment has changed, which creates new
constraints and/or new opportunities.
The existence of a new system causes the requirements for the
system itself to change.

We can't prevent change, but we can manage it.

Internal Factors
We failed to ask the right people the right
questions at the right time during the initial
requirements gathering effort.
We failed to create a practical process to help
manage changes to the requirements that would
normally have happened on an incremental
basis.
Iterating from requirements to design causes
new requirements.

Unofficial Requirement Change
Some requirement changes are "official" external
changes, representing customer requests made
through the appropriate channels of communications
But many are "unofficial" (also known as
"requirements leakage”). Examples:

Direct customer requests to programmers
Functionality inserted by programmers with "careful
consideration" of what's good for the customer

Up to half of the total work product of the system are
invested in requirements leakage!

A Process for Managing Change
1. Recognize that change is inevitable, and plan

for it.
2. Baseline the requirements.
3. Establish a single channel to control change.
4. Use a change control system to capture

changes.
5. Manage change hierarchically.

Step 1: Recognize That Change Is
Inevitable, and Plan for It

The team must recognize that changing
requirements for the system is inevitable and
even necessary.

Develop a plan for managing change that
should include some allowance for change in
the initial baseline.

Step 2: Baseline the Requirements
In each iteration, the team should baseline the
requirements for the build

Putting version control on vision document, software
requirements and use-case models
Publishing it for the development team

Once the baseline has been established, new
requirements can be more easily identified and
managed.

A request for a new requirement can be compared against
the existing baseline to see where it will fit in and whether it
will create a conflict with any other requirements.

Step 2: Baseline the Requirements
If the change is accepted, we can manage the
evolution of that change from the vision to the
software requirements, from the software
requirements to the appropriate technical design
documents and models, and then to the code and the
test procedures.

Step 3: Establish a Single Channel to
Control Change

Ad hoc changes to a software system can cause
significant and unintended consequences
Every change should go through a single channel to
determine its impact on the system and to make the
official decision as to whether the change is going to
be made in the system or not.

For small projects, the official channel can be one person
– e.g., the project manager
For larger systems, the channel should consist of a few
people who share the responsibility and make the decision
together: Change Control Board (CCB)

Step 4: Use a Change Control System
to Capture Changes

The team should implement a system for capturing
all change requests.
When considering whether to approve a change
request, the CCB must consider the following
factors:

The impact of the change on the cost and functionality of
the system
The impact of the change on customers and other external
stakeholders not well represented on the CCB: other
project contractors, component suppliers, and so on
The potential for the change to destabilize the system

Step 4: Use a Change Control System
to Capture Changes

Once a change has been approved, the next step is to
decide where to insert the change.

For example, we need to determine whether to change a
requirement or to change a test being proposed.
Subsequent changes will ripple through in the hierarchy

Change Request Flow

Step 5: Manage Change Hierarchically
A change to one requirement can have a ripple effect
in other related requirements, the design, or other
subsystems

This fact may not be obvious to the requester, who casually
asks the programmer to make a "quick and easy" change to
the system.

If the requirements is well structured and the system
is well encapsulated, changes should be limited to
certain areas instead of being spread everywhere.
A programmer doesn't have the authority to introduce
new features and requirements directly into the code
on the user's behalf.

Hierarchical Ripple Effect

Impact Analysis by Traceability Link

Requirements Configuration
Management

Some elements of the preceding change review and
approval process are referred to as change control,
version control, or configuration management in
some organizations.

Requirements Configuration
Management
The benefits of requirements configuration management
are:

Prevents unauthorized and potentially destructive changes to
the requirements
Preserves the revisions to requirements documents
Facilitates the retrieval and/or reconstruction of previous
versions of documents
Supports a managed, organized baseline "release strategy"
for incremental improvements or updates to a system
Prevents simultaneous update of documents or conflicting
and uncoordinated updates to different documents at the
same time.

Key Points
A process to manage requirements can be useful
only if it recognizes and addresses the issue of
change.
Internal change factors include failing to ask the
right people the right questions at the right time and
failing to create a practical process to help manage
changes to requirements.
In order to have a reasonable probability of success,
requirements leakage must be stopped or at least
reduced to a manageable level.

