
Recall The Team Skills
1. Analyzing the Problem
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope
5. Refining the System Definition
6. Building the Right System

From Use Cases to Implementation
From Use Cases to Test Cases
Tracing Requirements
Managing Change
Assessing Requirements Quality

Chapter 26
From Use Cases to Test Cases

The tester perspective
Testing terms
Test cases from use cases
Black Box vs. White Box testing

A Tester's Perspective:
Musings on the Big Black Box
Traditionally, testers come late in the development
process.
They see the system as a black box because they
know little about it.
They may ask the following

What is the system supposed to do and in what order?
What are the things that may go wrong?
How can we create test scenarios?
How could I know that the system is tested completely?
Anything else about the system?
Is there a way to start testing earlier?

A Tester's Perspective:
Musings on the Big Black Box

This well be different if we have use cases.
Testers will have black box +

Comprehensive use case model showing how the
system behave, actors, and system-user
interaction.

each use case has basic and alternative flow of
events, pre-conditions, post-conditions
Supplementary nonfunctional requirements

Thus use-case technique can derive the
testing process.

Use case = test case ??
Not really.
We still need to make a lot of analysis to
derive test cases from the use cases.

Common Testing Terms
Test Plan: contains information about the
purpose and goals of testing within the project,
the strategies and resources needed to execute
the testing process.

Test case: set of test inputs, execution conditions
and expected results developed for a particular
objective (like satisfying a requirement)

Test Procedure: set of detailed instructions for
the setup, execution, and evaluation of results for
a given test case.

Common Testing Terms
Test script: a software script that automates
the execution of the test procedure.
Test coverage: defines the degree to which
a given test or a set of tests addresses all
specified test cases for a given system or
component.
Test item: a build that is an object of
testing

Test results: set of data captured during the
execution of a test

Relationships of test artifacts

Test plan Use case

Test case

contains Is source of

Provides instructions for

Test procedure

Test script

Test results

Records results of

Automates execution of

The role of test cases
Test cases forms the foundation on which
to design and develop test procedure
Depth of testing is proportional to the
number of test cases
Scale of test effort is proportional to the
number of test cases
Test design, development and resources
are governed by the test cases

Use case scenarios
A scenario is an instance of a use case
That is, it is a use case execution wherein
a specific user executes the use case in a
specific way

Use case scenarios
Start use case

Alternative flow 3
Alternative flow 1

Alternative flow 2

Alternative flow 4

end use case

end use case

end use case

Deriving test cases from use cases:
A four step processes
1. Identify the use case scenarios
2. For each scenario, identify one or more

test cases
3. For each test case, identify the conditions

that will cause it to execute.
4. Complete the test case by adding data

values

Identify the use case scenarios
Use simple matrix that can be implemented in a
spreadsheet, database or test management tool.
Number the scenarios and define the
combinations of basic and alternative flows that
leads to them.
Many scenarios are possible for one use case
Not all scenarios may be documented .. Use an
iterative process
Not all documented scenarios may be tested

Use cases may be at a level that is insufficient for
testing
Team’s review process may discover additional scenarios

Identify the use case scenarios
Example

Scenario
number

Originating
flow

Alternative
flow

Next
alternative

Next
alternative

1 Basic flow

2 Basic flow Alt. flow 1

3 Basic flow Alt. flow 1 Alt. flow 2

4 Basic flow Alt. flow 3

5 Basic flow Alt. flow 3 Alt. flow 1

6 Basic flow Alt. flow 3 Alt. flow 1 Alt. flow 2

7 Basic flow Alt. flow 4

8 Basic flow Alt. flow 3 Alt. flow 4

Identify the test cases
Parameters of any test
case:

Conditions
Input (data values)
Expected result
Actual result

Test
case ID

Scenario/
conditon

Data
value 1

Data
value 2

Data
value N

Exp.
results

Actual
results

1 Scenario 1

2 Scenario 2

3 Scenario 3

Identify the test conditions
For each test case identify the conditions
that will cause it to execute a specific
events.
Use matrix with columns for the conditions
and for each condition state whether it is

valid (V): must be true for the basic flow to
execute
Invalid (I): this will invoke an alternative flow
Not applicable (N/A): to the test case

Read HOLIS example page 314-315

Add data values to complete the test
cases

Design real input data values that will
make such conditions to be valid or invalid
and hence the scenarios to happen.
You may want to look at the use case
constructs and branches.

Managing test coverage
Select the most appropriate or critical use
cases for the most thorough testing
Choose the use cases based on a balance
between the cost, risk, and necessity of
verifying the use case.
Determine the relative importance of your
use cases by using a priority algorithm

Black-box vs. white-box testing
White-box testing
=internal inspection
=design assurance

look inside the system and see how it does
the things. Look at the architecture and
the implementation of the system

Key Points
One of the greatest benefits of the use case
techniques is that it builds a set of assets that
can be used to derive the testing process.
Use cases can directly derive or seed the
development of test cases
The scenarios of a use case create templates for
individual test cases
Adding data values completes the test cases
Testing non-functional requirements completes
the testing process.

