
Recall The Team Skills

1. Analyzing the Problem (with 5 steps)
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope
5. Refining the System Definition
6. Building the Right System

Building the Right System

Ch 25. From Use Cases to Implementation
Ch 26. From Use Cases to Test Cases
Ch 27. Tracing Requirements
Ch 28. Managing Change
Ch 29. Assessing Requirements Quality in
Iterative Development

Chapter 25
From Use Cases to Implementation

The Orthogonality Problem
Use Cases realization in the Design Model
Collaboration
From Design to Implementation

Mapping Requirements Directly to
Design and Code

The Orthogonality Problem
It's probably fairly straightforward to find,
inspect, and validate the code that fulfills
requirements such as

"Support up to an eight-digit floating-point input
parameter"

However, things get a little trickier for
requirements such as

"The system shall handle up to 100,000 trades an
hour"

The Orthogonality Problem
There is little correlation between the
requirement and the design and
implementation; they are orthogonal, or
nearly so.
In other words, the form of our requirements
and the form of our design and
implementation are different.
There is no one-to-one mapping to make
implementation and validation easier.

Reasons of orthogonality problem
Requirements speak of real-world item, while code
speaks about stacks, queues, and algorithms.
Some requirements (like non-functional req.s) have
little to do with logical structure of code.
Some functional req.s require other parts of the
system to interact with.
Good system design is more related to resources
management, reusing code, and applying purchased
components.

Avoiding Orthogonality problem
By using object-orientation ..why?

Reuse
No changes in real world items implies no
changes in code
Abstraction and moving from classes to objects
Classes collaboration

Architecture of Software Systems
Software Architecture involves

Description of elements from which the systems are built,
interactions amongst those elements, patterns that guide
their composition, and constraints on those patterns.
(Shaw and Garlan, 1996)

Why architecture?
understand what the system does
Understand how it works
Think and work on pieces of the system
Extend the system
Reuse parts of the system to build another one

The “4+1” views of Architecture
Different groups of stakeholders need to see the
architecture from different views
Kruchten (1995) “4+1” views:

Logical view: the functionality of the system
Implementation view: source codes, libraries, object
classes, .. etc
Process view: operations of the system and interfaces with
others
Deployment view: operating systems and platforms
Use case view: ties all views together

The “4+1” views of Archtiecture

Logical view

Process view

Implementation view

Deployment view

Use case view

Programmer
Software Management

System Engineering
System topology
Delivery, installation
communication

End User
Functionality

Designer/Tester
Behavior

System Integrators
Performance
Scalability
Throughput

HOLIS Case Study
1. Logical view: describes the various classes and

subsystems that implemented behavior
2. Implementation view: describes the various code

artifacts for HOLIS
3. Process view: demonstrate how multitasking is

done
4. Deployment view: how HOLIS is distributed across

CCU, Control switch, homeowner’s PCs.

Realizing Use Cases
in the Design Model

Use cases are realized via collaborations, which are
societies of classes, interfaces, subsystems, or other
elements that cooperate to achieve some behavior.
A common UML stereotype, the use-case realization, is
used for this purpose: A special form of collaboration,
one that shows how the functionality of a specific use
case is achieved in the design model.
Symbolic representation of a collaboration

Example

A Use-Case Realization in
the Design Model

Structural and Behavioural
Aspects of Collaborations

Collaborations have two aspects:
A structural part that specifies the static structure
of the system (the classes, elements, interfaces,
and subsystems on which the implementation is
structured).
A behavioral part that specifies the dynamics of
how the elements interact to accomplish the
result.

Structural and Behavioural
Aspects of Collaborations

A class diagram represents the structural
aspects, whereas an interaction diagram
(sequence or collaboration) represents the
behavioural aspects.

Class Diagram for the HOLIS Emergency
Message Sequence Collaboration

Behavioral Aspects of the HOLIS Emergency
Message Sequence Collaboration

Using Collaborations to Realize Sets of
Individual Requirements

From Design to Implementation
By modeling the system this way, we can ensure that
the significant use cases and requirements of the
system are properly realized in the design model.

In turn, this helps ensure that the software design conforms
to the requirements.

The next step follows quite logically, although
admittedly not easily.

The classes and the objects defined in the design model are
further refined in the iterative design process and eventually
implemented in terms of the physical software
components—source files, binaries, executables, and
others—that will be used to create the executable software.

Key Points
Some requirements map well from design to implementation in code.
Other requirements have little correlation to design and
implementation; the form of the requirement differs from the form of
the design and implementation (the problem of orthogonality).
Object orientation and use cases can help alleviate the problem of
orthogonality.
Use cases drive design by allowing all stakeholders to examine the
proposed system implementation against a backdrop of system uses
and requirements.
Good system design is not necessarily optimized to make it easy to
see how and where the requirements are implemented.

