
Major Exam II Reschedule

5:30 – 7:30 pm in Sat Dec 9nd

Recall The Team Skills

1. Analyzing the Problem (with 5 steps)
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope
5. Refining the System Definition

1. Software Requirements: a more rigorous look
2. Refining the Use cases
3. Developing the Supplementary Specification
4. On Ambiguity and Specificity
5. Technical Methods for Specifying Requirements

6. Building the Right System

Chapter 22
Developing the

Supplementary Specification

Role of the Supplementary Specification
Nonfunctional Requirements
Design Constraints
Linking the Supplementary Spec. to the Use Cases

The Role of the Supplementary
Specification
There are many requirements can’t be
implemented as in the use-case model.
Example: "The application must run on Windows
XP"
So there is a need for supplementary specification.
Supplementary: because we assume the use-
case format will contain most of the functional
requirements for the system, and we'll supplement
the use-case model with these additional
requirements.

Exploring Nonfunctional
Requirements

Nonfunctional requirements can be organized
into four categories:

Usability
Reliability
Performance
Supportability

Usability (ease of use)

1. Specify the required training time for a user to become
minimally productive: able to accomplish simple tasks)
and
operationally productive: able to accomplish normal day-
to-day tasks).

2. Specify measurable task times for typical tasks or
transactions that the end user will be carrying out.

3. Compare the usability of the new system with other
state-of-the-art systems that the user community knows
and likes.

Usability (ease of use)

4. Specify the existence and required features of
online help systems, wizards, tool tips, user
manuals, and other forms of documentation and
assistance.

5. Follow conventions and standards that have been
developed for the human-to-machine interface.

Reliability

1. Availability. The system must be available
for operational use during a specified
percentage of the time.

2. Mean time between failures (MTBF). This is
usually specified in hours, but it also could
be specified in days, months, or years.

3. Mean time to repair (MTTR). How long is the
system allowed to be out of operation after it
has failed?

Reliability

4. Accuracy. What precision is required in
systems that produce numerical outputs?

5. Maximum bugs, or defect rate. This is
usually expressed in terms of bugs/KLOC
(thousands of lines of code) or bugs per
function-point.

6. Bugs per type. This is usually categorized in
terms of minor, significant, and critical bugs.

Performance

1. Response time for a transaction: average,
maximum

2. Throughput: transactions per second
3. Capacity: the number of customers or

transactions the system can accommodate
4. Degradation modes: the acceptable mode of

operation when the system has been
degraded

Supportability

Supportability is the ability of the software to
be easily modified to accommodate
enhancements and repairs.
Example : "Modifications to the system for a
new set of withholding tax rates shall be
accomplished by the team within 1 day of
notification by the tax regulatory authority."

Understanding Design Constraints

Design constraints are restrictions on the design
of a system, or the process by which a system is
developed, that do not affect the external
behaviour of the system but that must be fulfilled
to meet technical, business, or contractual
obligations.
Sources of Design Constraints

1. Restriction of design options
2. Conditions imposed on the development process
3. Regulations and imposed standards.

Restriction of Design Options

Most requirements allow for more than one
design option.
Whenever possible, we want to leave that
choice to the designers rather than specifying
it in the requirements.
Whenever we do not allow a choice to be
made ("Use Oracle DBMS"), the design has
been constrained, and a degree of flexibility
and development freedom has been lost.

Conditions Imposed on the
Development Process
These are due to the following:
Compatibility with existing systems: "The
application must run on both our new and old
platforms."
Application standards: "Use the class library from
Developer's Library 99-724 on the corporate IT
server."
Corporate best practices and standards:
"Compatibility with the legacy database must be
maintained." "Use our C++ coding standards."

Regulations and Imposed Standards

Typical regulatory design constraints might
include regulations and standards from the
following:

Food and Drug Administration (FDA)
Federal Communications Commission (FCC)
Department of Defence (DOD)
International Organization for Standardization
(ISO)
Underwriters Laboratory (UL)
International standards such as the German
Industrial Standard (DIN)

Handling Design Constraints

Distinguish them from the other requirements.
Include all design constraints in a special
section of your requirements, or use a special
attribute so they can be readily aggregated.
Identify the source of each design constraint.
Document the rationale for each design
constraint.

Are Design Constraints True
Requirements?

Yes, they do meet the definition of a
requirement as something necessary to
satisfy a contract, standard, specification, or
other formally imposed documentation.

Treat a design constraint just like any other
requirement and make certain that the
system is designed and developed in
compliance with that design constraint.

Identifying Other Requirements

Physical artifacts (CDs and so on) that are
deliverables of the system
Target system configuration and preparation
requirements
Support or training requirements
Internationalization and localization
requirements

Linking the Supplementary
Specification to the Use Cases
How do non-functional requirements apply to
the use cases?
Do specific use cases have associated non-
functional requirements, and, if so, how could
we indicate that?

Linking the Supplementary
Specification to the Use Cases

One way to do so is to define certain classes of
non-functional requirements. For example, we
might define "Quality of Service" classes for
response time as follows:

Class 1: 0 to 250 milliseconds
Class 2: 251 to 499 milliseconds
Class 3: 0.5 to 2 seconds
Class 4: 2.1 to 12 seconds
Class 5: 12.1 seconds to 60 minutes

Linking the Supplementary
Specification to the Use Cases

Then we could associate these classes with special
requirements recorded in the use case itself. For
example, Use Case A might record

Response time: Class 2 for main flow of events,
Class 4 for all exceptions

special requirements is an additional section that can
be included in the documentation of a use case.

You can do the same for other classes of non-
functional requirements (such as reliability, safety,
and so on) and map these requirements to the
specific use cases.

Template for the Supplementary
Specification

Template for the Supplementary
Specification (Cont’d)

Template for the Supplementary
Specification (Cont’d)

