
Major Exam II Reschedule

5:30 – 7:30 pm 
in Tue Dec 5th



Recall The Team Skills
1. Analyzing the Problem (with 5 steps)
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope
5. Refining the System Definition

1. Software Requirements: a more rigorous look
2. Refining the Use cases
3. Developing the Supplementary Specification
4. On Ambiguity and Specificity
5. Technical Methods for Specifying Requirements

6. Building the Right System



Chapter 21
Refining the Use Cases
How Use Cases Evolve
The Scope of a Use Case
Dependency Relationships
Extending Use Cases
Including Use Cases



How Use Cases Evolve 
The test for enough use cases should be 
the following:
A complete collection of use cases should 
describe 

all possible ways in which the system can be 
used, 
at a level of specificity suitable to drive design, 
implementation, and testing. 



The Scope of a Use Case
Consider the use of a recycling machine. 
The customer 

inserts cans and bottles into the recycling 
machine, 
presses a button, 
and receives a printed receipt that can be 
exchanged for money.

Are there 3 uses cases? 
one use case to insert a deposit item, 
another use case to press the button, 
and another to acquire the receipt? 

Or is it just one use case?



The Scope of a Use Case
Three actions occur, but one without the others is 
of little value to the customer. 
The complete process is required to make sense to 
the customer. 
Thus, the complete dialogue

from inserting the first deposit item to pressing the 
button to getting the receipt

is a complete instance of use, of one use case.



Dependency Relationships 
between Use Cases

Extend relationship defines 
that instances of a use case 
that may be augmented by 
some additional behaviour in 
an extended use case.
Include relationship is a 
directed relationship 
between use cases, implying 
that the behaviour in the 
additional use case is 
inserted into the behaviour 
of the base use case. 



Extending Use Cases 
Systems evolve over time and additional 
features and functionality are added. 
A use case may be extended to have more 
actions in certain conditions.



Extending Use Cases 
Why use the extend concept at all?

1. It can simplify maintenance and allow us to 
focus only on the extended functionality

2. Extension points for envisioned extensions 
can be provided in the base use case, 
which is an indication to future intent

3. The extended use case may represent 
optional behavior as opposed to a new, 
basic or alternative flow



A Base Use Case 
with Extended Flow

In order to apply the extend construct, all that is 
required is to indicate the extension points in the 
basic flow and the conditions under which the 
extended flow is to be executed. 



Including Use Cases in 
Other Use Cases

Certain patterns of user and system 
behavior reoccur in a variety of places
e.g., entering passwords, performing a 
system status check, selecting items from 
a table, etc.
To avoid redundancy, the include 
relationship can be used.
When used properly, the include 
relationship can simplify the development 
and maintenance activities.



The Flow of 
an Included Use Case 



Key Points
To support development and testing activities, 
the use cases defined earlier in the project must 
be more fully elaborated.
The use-case model is reviewed and will often be 
refactored as well.
A well-elaborated use case also defines all 
alternative flows, pre- and post-conditions, and 
special requirements.
The additional use-case relationships extend and 
include help the team structure and maintain the 
use-case model.



Reading Assignment
Read HOLIS case study in pages 245-251.


