
Major Exam II Reschedule

5:30 – 7:30 pm 
in Tue Dec 5th



Recall The Team Skills

1. Analyzing the Problem (with 5 steps)
2. Understanding User and Stakeholder Needs
3. Defining the System
4. Managing Scope

1. Establishing project scope
2. Managing your customer

5. Refining the System Definition
6. Building the Right System



Requirements Pyramid



Team Skill 5
Refining the System Definition

Ch 20. Software Requirements: a more 
rigorous look
Ch 21: Refining the Use Cases
Ch 22: Developing the Supplementary 
Specification
Ch 23: On Ambiguity and Specificity
Ch 24: Technical Methods for Specifying 
Requirements



Chapter 20
Software Requirements

A More Rigorous Look

Relationships between requirements, 
features and use cases.

Types of requirements.
Requirement Vs. Design



Introduction
In previous team skills, the features and the use-
case models were at a high level of abstraction for 
the following reasons.

We can better understand the main characteristics
of the system by focusing on its features and key 
use cases and how they fulfill user needs.
We can assess the system for its completeness, its 
consistency, and its fit within its environment.
We can use this information to determine feasibility 
and to manage the scope of the system before 
making significant resource investments.



Looking Deeper into 
Software Requirements

Definition of a software requirement:
1. A software capability needed by the user

to solve a problem or to achieve an 
objective

2. A software capability that must be met or 
possessed by a system or a system 
component to satisfy a contract, 
standard, specification, or other formally 
imposed documentation



Looking Deeper into
Software Requirements

To fully describe the behavior of a software 
system we need 5 major classes:

1. Inputs to the system: Not only the content of 
the input but also, as necessary, the details of 
input devices and the form, look, and feel—
protocol—of the input. 

2. Outputs from the system: A description of the 
output devices, such as voice-output or visual 
display, that must be supported, as well as the 
protocol and formats of the information 
generated by the system.



Looking Deeper into 
Software Requirements

3. Functions of the system: The mapping of inputs 
to outputs, and their various combinations.

4. Attributes of the system: non-functional 
requirements like reliability, maintainability, 
availability, and throughput that the developers 
must taken into account.

5. Attributes of the system environment: additional 
non-functional requirements as the ability of the 
system to operate with other applications, 
loads, and operating systems.



System Elements



The Relationship between 
Software Requirements and Use Cases

Use cases are just one way to express software 
requirements.
Use cases can't conveniently express certain 
types of requirements 
Example: "the application must support up to 100 
simultaneous users“
There are better ways to express other types of 
requirements as well (Chapter 22).



The Relationship between 
Features and Software Requirements

Features
Simple descriptions of 
system services in a 
shorthand manner. 
Help us understand and 
communicate at a high level 
of abstraction.
We can't fully describe the 
system and write code from 
those descriptions. They 
are too abstract for this 
purpose.

Software Req.s
Detailed descriptions of 
system services 
(features).
We can code from them.
They should be specific 
enough to be "testable" 



The Requirements Dilemma 
What versus How

Requirements shall tell us what the system is to 
do, and NOT how the system shall do it.
Exclude project information:

Information associated with project management 
(schedules, verification and validation plans, 
budgets, and staffing schedules)
Information about how the system will be tested.

Exclude design information
System design or architecture. 



Requirements versus Design
Software requirements and design are iterative

Current requirements cause certain design 
decisions
Design decisions develop new requirements



Types of Requirements

Functional software requirements: Express how the 
system behaves—its inputs, its outputs, and the 
functions it provides to its users. 
Nonfunctional software requirements: To express some 
of the "attributes of the system" or "attributes of the 
system environment" such as usability, reliability, 
performance and supportability
Design constraints: restrictions on the design of a 
system, or the process by which a system is 
developed, that do not affect the external behavior of 
the system but that must be fulfilled to meet technical, 
business, or contractual obligations.



Types of Requirements



Key Points
A complete set of requirements can be determined by 
defining the inputs, outputs, functions, and attributes of the 
system plus the attributes of the system environment.
Requirements should exclude project-related information, 
such as schedules, project plans, budgets, and tests, as 
well as design information.
The requirements/design process is iterative; requirements 
lead to the selection of certain design options, which in 
turn may initiate new requirements.
Design constraints are restrictions on the design of the 
system or on the process by which a system is developed.


