
Load Balancing and Termination
Detection

Chapter 7

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

1

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

2

Load balancing – used to distribute computations
fairly across processors in order to obtain the
highest possible execution speed.

Termination detection – detecting when a
computation has been completed. More difficult
when the computation is distributed.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

3

Load balancing

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

4

Static Load Balancing

Before execution of any process.
Some potential static load balancing techniques:

• Round robin algorithm — passes out tasks in sequential
order of processes coming back to the first when all
processes have been given a task
• Randomized algorithms — selects processes at random
to take tasks
• Recursive bisection — recursively divides the problem
into sub-problems of equal computational effort while
minimizing message passing
• Simulated annealing — an optimization technique
• Genetic algorithm — another optimization technique

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

5

Several fundamental flaws with static load
balancing even if a mathematical solution exists:

• Very difficult to estimate accurately execution
times of various parts of a program without actually
executing the parts.

• Communication delays that vary under different
Circumstances

• Some problems have an indeterminate number
of steps to reach their solution.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

6

Dynamic Load Balancing

Vary load during the execution of the processes.

All previous factors taken into account by making
division of load dependent upon execution of the
parts as they are being executed.

Does incur an additional overhead during
execution, but it is much more effective than static
load balancing

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

7

Processes and Processors
Computation will be divided into work or tasks to be
performed, and processes perform these tasks.
Processes are mapped onto processors.

Since our objective is to keep the processors busy,
we are interested in the activity of the processors.

However, often map a single process onto each
processor, so will use the terms process and
processor somewhat interchangeably.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

8

Dynamic Load Balancing

Can be classified as:

• Centralized

• Decentralized

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

9

Centralized dynamic load
balancing

Tasks handed out from a centralized location.
Master-slave structure.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

10

Decentralized dynamic load
balancing

Tasks are passed between arbitrary processes.

A collection of worker processes operate upon the
problem and interact among themselves, finally
reporting to a single process.

A worker process may receive tasks from other
worker processes and may send tasks to other
worker processes (to complete or pass on at their
discretion).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

11

Centralized Dynamic Load Balancing

Master process(or) holds collection of tasks to be
performed.

Tasks sent to slave processes. When a slave
process completes one task, it requests another
task from the master process.

Terms used : work pool, replicated worker,
processor farm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

12

Centralized work pool

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

13

Termination

Computation terminates when:

• The task queue is empty and

• Every process has made a request for another
task without
any new tasks being generated

Not sufficient to terminate when task queue empty
if one or more processes are still running if a
running process may provide new tasks for task
queue.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

14

Decentralized Dynamic Load Balancing
Distributed Work Pool

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

15

Fully Distributed Work Pool

Processes to execute tasks from each other

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

16

Task Transfer Mechanisms
Receiver-Initiated Method

A process requests tasks from other processes
it selects.

Typically, a process would request tasks from
other processes when it has few or no tasks to
perform.

Method has been shown to work well at high
system load.
Unfortunately, it can be expensive to determine
process loads.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

17

Sender-Initiated Method

A process sends tasks to other processes it
selects.
Typically, a process with a heavy load passes out
some of its tasks to others that are willing to
accept them.

Method has been shown to work well for light
overall system loads.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

18

Another option is to have a mixture of methods.

Unfortunately, it can be expensive to determine
process loads.

In very heavy system loads, load balancing can
also be difficult to achieve because of the lack of
available processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

19

Decentralized selection algorithm
requesting tasks between slaves

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

20

Process Selection

Algorithms for selecting a process:

Round robin algorithm – process Pi requests tasks
from process Px, where x is given by a counter
that is incremented after each request, using
modulo n arithmetic (n processes), excluding x = i.

Random polling algorithm – process Pi requests
tasks from process Px, where x is a number that is
selected randomly between 0 and n - 1 (excluding
i).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

21

Load Balancing Using a Line Structure

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

22

Master process (P0) feeds queue with tasks at one
end, and tasks are shifted down queue.

When a process, Pi (1 <= i < n), detects a task at its
input from queue and process is idle, it takes task
from queue.

Then tasks to left shuffle down queue so that space
held by task is filled. A new task is inserted into e
left side end of queue.

Eventually, all processes have a task and queue
filled with new tasks. High-priority or larger tasks
could be placed in queue first.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

23

Shifting Actions
Could be orchestrated by using messages between
adjacent processes:
• For left and right communication
• For the current task

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

24

Code Using Time Sharing Between
Communication and Computation

Master process (P0)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

25

Process Pi (1 < i < n)

Nonblocking nrecv() necessary to check for a request being
received from right.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

26

Nonblocking Receive Routines
MPI

Nonblocking receive, MPI_Irecv(), returns a
request “handle,” which is used in subsequent
completion routines to wait for the message or to
establish whether message has actually been
received at that point (MPI_Wait() and MPI_Test(),
respectively).

In effect, nonblocking receive, MPI_Irecv(), posts a
request for message and returns immediately.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

27

Load balancing using a tree
Tasks passed from node into one of the two nodes below it
when node buffer empty.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

28

Distributed Termination Detection Algorithms
Termination Conditions

At time t requires the following conditions to be satisfied:

• Application-specific local termination conditions exist
throughout the collection of processes, at time t.

• There are no messages in transit between processes at time t.

Subtle difference between these termination conditions and
those given for a centralized load-balancing system is having to
take into account messages in transit.

Second condition necessary because a message in transit might
restart a terminated process. More difficult to recognize. Time for
messages to travel between processes not known in advance.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

29

Very general distributed termination
algorithm

Each process in one of two states:

1. Inactive - without any task to perform

2. Active

Process that sent task to make a process enter
the active state becomes its “parent.”

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

30

When process receives a task, it immediately sends an
acknowledgment message, except if the process it receives
the task from is its parent process. Only sends an
acknowledgment message to its parent when it is ready to
become inactive, i.e. when

• Its local termination condition exists (all tasks are
completed), and

• It has transmitted all its acknowledgments for tasks it has
received, and

• It has received all its acknowledgments for tasks it has sent
out.

A process must become inactive before its parent process.
When first process becomes idle, the computation can
terminate.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

31

Termination using message
acknowledgments

Other termination algorithms in textbook.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

32

Ring Termination Algorithms
Single-pass ring termination algorithm

1. When P0 terminated, it generates token passed to P1.

2. When Pi (1 <=i < n) receives token and has already terminated,
it passes token onward to Pi+1. Otherwise, it waits for its local
termination condition and then passes token onward. Pn-1
passes token to P0.

3. When P0 receives a token, it knows that all processes in the ring
have terminated. A message can then be sent to all processes
informing them of global termination, if necessary.

Algorithm assumes that a process cannot be reactivated after
reaching its local termination condition. Does not apply to work
pool problems in which a process can pass a new task to an idle
process

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

33

Ring termination detection algorithm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

34

Process algorithm for local termination

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

35

Dual-Pass Ring Termination Algorithm

Can handle processes being reactivated but requires two
passes around the ring.

Reason for reactivation is for process Pi, to pass a task to
Pj where j < i and after a token has passed Pj,. If this
occurs, the token must recirculate through the ring a
second time.

To differentiate circumstances, tokens colored white or
black. Processes are also colored white or black.

Receiving a black token means that global termination
may not have occurred and token must be recirculated
around ring again.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

36

Algorithm is as follows, again starting at P0:

1.P0 becomes white when terminated and generates white token
to P1.

2.Token passed from one process to next when each process
terminated, but color of token may be changed. If Pi passes a
task to Pj where j < i (before this process in the ring), it becomes a
black process; otherwise it is a white process. A black process will
color token black and pass it on. A white process will pass on
token in its original color (either black or white). After Pi passed on
a token, it becomes a white process. Pn-1 passes token to P0.

3.When P0 receives a black token, it passes on a white token; if it
receives a white token, all processes have terminated.

In both ring algorithms, P0 becomes central point for global
termination. Assumes acknowledge signal generated to each
request.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

37

Passing task to previous processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

38

Tree Algorithm
Local actions described can be applied to various structures,
notably a tree structure, to indicate that processes up to that
point have terminated.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

39

Fixed Energy Distributed Termination
Algorithm

A fixed quantity within system, colorfully termed “energy.”

• System starts with all energy being held by the root process.
• Root process passes out portions of energy with tasks to
processes making requests for tasks.
• If these processes receive requests for tasks, energy divided
further and passed to these processes.
• When a process becomes idle, it passes energy it holds back
before requesting a new task.
• A process will not hand back its energy until all energy it handed
out returned and combined to total energy held.
• When all energy returned to root and root becomes idle, all
processes must be idle and computation can terminate.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

40

Fixed Energy Distributed Termination
Algorithm

Significant disadvantage - dividing energy will be of finite
precision and adding partial energies may not equate to
original energy.

In addition, can only divide energy so far before it
becomes essentially zero.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

41

Load balancing/termination detection

Example
Shortest Path Problem

Finding the shortest distance between two points on a graph.
It can be stated as follows:

Given a set of interconnected nodes where the links
between the nodes are marked with “weights,” find
the path from one specific node to another specific
node that has the smallest accumulated weights.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

42

The interconnected nodes can be described by a graph.

The nodes are called vertices, and the links are called
edges.

If the edges have implied directions (that is, an edge can
only be traversed in one direction, the graph is a directed
graph.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

43

Graph used to find solution to many different problems; eg:

1. Shortest distance between two towns or other points on a
map, where the weights represent distance

2. Quickest route to travel, where weights represent time (
quickest route may not be shortest route if different modes
of travel available; for example, flying to certain towns)

3. Least expensive way to travel by air, where weights
represent cost of flights between cities (the vertices)

4. Best way to climb a mountain given a terrain map with
contours

5. Best route through a computer network for minimum
message delay (vertices represent computers, and
weights represent delay between two computers)

6. Most efficient manufacturing system, where weights
represent hours of work

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

44

“The best way to climb a mountain” will be used as an
example.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

45

Example:
The Best Way to Climb a Mountain

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

46

Graph of mountain climb

Weights in graph indicate amount of effort that would be expended
in traversing the route between two connected camp sites.

The effort in one direction may be different from the effort in the
opposite direction (downhill instead of uphill!). (directed graph)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

47

Graph Representation
Two basic ways that a graph can be represented in a program:

1. Adjacency matrix — a two-dimensional array, a, in which
a[i][j] holds the weight associated with the edge between
vertex i and vertex j if one exists

2. Adjacency list — for each vertex, a list of vertices directly
connected to the vertex by an edge and the corresponding
weights associated with the edges

Adjacency matrix used for dense graphs. Adjacency list used for
sparse graphs.

Difference based upon space (storage) requirements. Accessing
the adjacency list is slower than accessing the adjacency matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

48

Representing the graph

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

49

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

50

Searching a Graph

Two well-known single-source shortest-path algorithms:

• Moore’s single-source shortest-path algorithm (Moore,
1957)

• Dijkstra’s single-source shortest-path algorithm (Dijkstra,
1959)

which are similar.

Moore’s algorithm is chosen because it is more amenable to
parallel implementation although it may do more work.
The weights must all be positive values for the algorithm to
work.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

51

Moore’s Algorithm

Starting with the source vertex, the basic algorithm
implemented when vertex i is being considered as
follows.

Find the distance to vertex j through vertex i and
compare with the current minimum distance to vertex j.

Change the minimum distance if the distance through
vertex i is shorter. If di is the current minimum distance
from source vertex to vertex i and wi,j is weight of edge
from vertex i to vertex j:

dj = min(dj, di + wi,j)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

52

Moore’s Shortest-path Algorithm

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

53

Data Structures

First-in-first-out vertex queue created to hold a list of
vertices to examine. Initially, only source vertex is in
queue.

Current shortest distance from source vertex to vertex i
stored in array dist[i]. At first, none of these distances
known and array elements are initialized to infinity.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

54

Code

Suppose w[i][j] holds the weight of the edge from vertex i
and
vertex j (infinity if no edge). The code could be of the form

newdist_j = dist[i] + w[i][j];
if (newdist_j < dist[j]) dist[j] = newdist_j;

When a shorter distance is found to vertex j, vertex j is
added to the queue (if not already in the queue), which will
cause vertex j to be examined again - Important aspect of
this algorithm, which is not present in Dijkstra’s algorithm.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

55

Stages in Searching a Graph
Example

The initial values of the two key data structures are

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

56

After examining A to

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

57

After examining B to F, E, D, and C::

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

58

After examining E to F

51

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

59

After examining D to E:

51

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

60

After examining C to D: No changes.
After examining E (again) to F :

No more vertices to consider. Have minimum distance from
vertex A to each of the other vertices, including destination
vertex, F.

Usually, path required in addition to distance. Then, path
stored as distances recorded. Path in our case is A -> B ->
D -> E ->F.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

61

Sequential Code

Let next_vertex() return the next vertex from the vertex
queue or no_vertex if none.

Assume that adjacency matrix used, named w[][].

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

62

Parallel Implementations

Centralized Work Pool

Centralized work pool holds vertex queue, vertex_queue[]
as tasks.

Each slave takes vertices from vertex queue and returns
new vertices.

Since the structure holding the graph weights is fixed, this
structure could be copied into each slave, say a copied
adjacency matrix.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

63

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

64

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

65

Decentralized Work Pool

Convenient approach is to assign slave process i to search
around vertex i only and for it to have the vertex queue entry
for vertex i if this exists in the queue.

The array dist[] distributed among processes so that
process i maintains current minimum distance to vertex i.

Process also stores adjacency matrix/list for vertex i, for the
purpose of identifying the edges from vertex i.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

66

Search Algorithm

Vertex A is the first vertex to search. The process assigned
to vertex A is activated.

This process will search around its vertex to find distances
to connected vertices.

Distance to process j will be sent to process j for it to
compare with its currently stored value and replace if the
currently stored value is larger.

In this fashion, all minimum distances will be updated during
the search.

If the contents of d[i] changes, process i will be reactivated
to search again.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

67

Distributed graph search

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

68

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

69

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

70

Mechanism necessary to repeat actions and terminate
when all processes idle - must cope with messages in
transit.

Simplest solution

Use synchronous message passing, in which a process
cannot proceed until destination has received message.

Process only active after its vertex is placed on queue.
Possible for many processes to be inactive, leading to an
inefficient solution.

Impractical for a large graph if one vertex is allocated to
each processor. Group of vertices could be allocated to
each processor.

