
Chapter 6

Synchronous Computations

6.1Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Synchronous Computations

In a (fully) synchronous application, all the processes
synchronized at regular points.

Barrier
A basic mechanism for synchronizing processes - inserted
at the point in each process where it must wait.

All processes can continue from this point when all the
processes have reached it (or, in some implementations,
when a stated number of processes have reached this
point).

6.2

Processes reaching barrier
at different times

6.3Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

In message-passing systems, barriers provided with library
routines:

6.4

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

MPI
MPI_Barrier()

Barrier with a named communicator being the only
parameter.

Called by each process in the group, blocking until all
members of the group have reached the barrier call and
only returning then.

6.5

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Barrier Implementation

Centralized counter implementation (a linear barrier):

6.6

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Good barrier implementations must take into account
that a barrier might be used more than once in a process.

Might be possible for a process to enter the barrier for
a second time before previous processes have left the
barrier for the first time.

6.7

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Counter-based barriers often have two phases:

• A process enters arrival phase and does not leave this
phase until all processes have arrived in this phase.

• Then processes move to departure phase and are released.

Two-phase handles the reentrant scenario.

6.8

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example code:

Master:

for (i = 0; i < n; i++) /*count slaves as they reach barrier*/
recv(Pany);

for (i = 0; i < n; i++) /* release slaves */
send(Pi);

Slave processes:

send(Pmaster);
recv(Pmaster);

6.9

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Barrier implementation in
a message-passing system

6.10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Tree Implementation
More efficient. O(log p) steps
Suppose 8 processes, P0, P1, P2, P3, P4, P5, P6, P7:

1st stage: P1 sends message to P0; (when P1 reaches its barrier)
P3 sends message to P2; (when P3 reaches its barrier)
P5 sends message to P4; (when P5 reaches its barrier)
P7 sends message to P6; (when P7 reaches its barrier)

2nd stage: P2 sends message to P0; (P2 & P3 reached their barrier)
P6 sends message to P4; (P6 & P7 reached their barrier)

3rd stage: P4 sends message to P0; (P4, P5, P6, & P7 reached barrier)
P0 terminates arrival phase;
(when P0 reaches barrier & received message from P4)

Release with a reverse tree construction.

6.11

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Tree barrier

6.12

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Butterfly Barrier

6.13

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Local Synchronization
Suppose a process Pi needs to be synchronized and to
exchange data with process Pi-1 and process Pi+1 before
continuing:

Not a perfect three-process barrier because process Pi-1
will only synchronize with Pi and continue as soon as Pi
allows. Similarly, process Pi+1 only synchronizes with Pi.

6.14

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Deadlock

When a pair of processes each send and receive from
each other, deadlock may occur.

Deadlock will occur if both processes perform the send,
using synchronous routines first (or blocking routines
without sufficient buffering). This is because neither will
return; they will wait for matching receives that are never
reached.

6.15

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

A Solution

Arrange for one process to receive first and then send
and the other process to send first and then receive.

Example

Linear pipeline, deadlock can be avoided by arranging
so the even-numbered processes perform their sends
first and the odd-numbered processes perform their
receives first.

6.16

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Combined deadlock-free blocking
sendrecv() routines

MPI provides MPI_Sendrecv() and MPI_Sendrecv_replace().
MPI sendrev()s actually has 12 parameters!

6.17

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Synchronized Computations

Can be classififed as:

• Fully synchronous
or

• Locally synchronous

In fully synchronous, all processes involved in the
computation must be synchronized.

In locally synchronous, processes only need to
synchronize with a set of logically nearby processes, not
all processes involved in the computation

6.18

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Fully Synchronized Computation Examples

Data Parallel Computations

Same operation performed on different data elements
simultaneously; i.e., in parallel.

Particularly convenient because:

• Ease of programming (essentially only one program).

• Can scale easily to larger problem sizes.

• Many numeric and some non-numeric problems can be
cast in a data parallel form.

6.19

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example

To add the same constant to each element of an array:

for (i = 0; i < n; i++)
a[i] = a[i] + k;

The statement:

a[i] = a[i] + k;

could be executed simultaneously by multiple processors,
each using a different index i (0 < i <= n).

6.20

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Data Parallel Computation

6.21

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

forall construct
Special “parallel” construct in parallel programming languages
to specify data parallel operations

Example

forall (i = 0; i < n; i++) {
body

}

states that n instances of the statements of the body can be
executed simultaneously.

One value of the loop variable i is valid in each instance of the
body, the first instance has i = 0, the next i = 1, and so on.

6.22

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

To add k to each element of an array, a, we can write

forall (i = 0; i < n; i++)
a[i] = a[i] + k;

6.23

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Data parallel technique applied to multiprocessors and
multicomputers

Example

To add k to the elements of an array:

i = myrank;
a[i] = a[i] + k; /* body */
barrier(mygroup);

where myrank is a process rank between 0 and n - 1.

6.24

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Data Parallel Example
Prefix Sum Problem

Given a list of numbers, x0, …, xn-1, compute all the partial
summations, i.e.:

x0 + x1; x0 + x1 + x2; x0 + x1 + x2 + x3; …).

Can also be defined with associative operations other
than addition.
Widely studied. Practical applications in areas such as
processor allocation, data compaction, sorting, and
polynomial evaluation.

6.25

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Data parallel method of adding all
partial sums of 16 numbers

6.26

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Data parallel prefix sum operation

6.27

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 6.28

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Synchronous Iteration
(Synchronous Parallelism)

Each iteration composed of several processes that start
together at beginning of iteration. Next iteration cannot
begin until all processes have finished previous iteration.

Using forall construct:

for (j = 0; j < n; j++) /*for each synch. iteration */
forall (i = 0; i < N; i++) { /*N procs each using*/

body(i); /* specific value of i */
}

6.29

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Using message passing barrier:

for (j = 0; j < n; j++) { /*for each synchr.iteration */
i = myrank; /*find value of i to be used */
body(i);
barrier(mygroup);

}

6.30

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Another fully synchronous computation example

Solving a General System of Linear Equations by Iteration
Suppose the equations are of a general form with n equations
and n unknowns

where the unknowns are x0, x1, x2, … xn-1 (0 <= i < n).

6.31

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

By rearranging the ith equation:

This equation gives xi in terms of the other unknowns.
Can be be used as an iteration formula for each of the
unknowns to obtain better approximations.

6.32

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Jacobi Iteration

All values of x are updated together.

Can be proven that Jacobi method will converge if diagonal
values of a have an absolute value greater than sum of the
absolute values of the other a’s on the row (the array of a’s is
diagonally dominant) i.e. if

This condition is a sufficient but not a necessary condition.

6.33

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Termination

A simple, common approach. Compare values computed in
one iteration to values obtained from the previous iteration.
Terminate computation when all values are within given
tolerance; i.e., when

However, this does not guarantee the solution to that accuracy.

6.34

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Convergence Rate

6.35

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Parallel Code
Process Pi could be of the form

x[i] = b[i]; /*initialize unknown*/
for (iteration = 0; iteration < limit; iteration++) {

sum = -a[i][i] * x[i];
for (j = 0; j < n; j++) /* compute summation */

sum = sum + a[i][j] * x[j];
new_x[i] = (b[i] - sum) / a[i][i]; /* compute unknown */
allgather(&new_x[i]); /*bcast/rec values */
global_barrier(); /* wait for all procs */

}

allgather() sends the newly computed value of x[i] from
process i to every other process and collects data broadcast
from the other processes.

6.36

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Introduce a new message-passing operation - Allgather.

Allgather

Broadcast and gather values in one composite construction.

6.37

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Partitioning

Usually number of processors much fewer than number
of data items to be processed. Partition the problem so
that processors take on more than one data item.

6.38

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

block allocation – allocate groups of consecutive
unknowns to processors in increasing order.

cyclic allocation – processors are allocated one unknown
in order; i.e., processor P0 is allocated x0, xp, x2p, …, x((n/p)-1)p,
processor P1 is allocated x1, xp+1, x2p+1, …, x((n/p)-1)p+1, and so
on.

Cyclic allocation no particular advantage here (Indeed,
may be disadvantageous because the indices of
unknowns have to be computed in a more complex way).

6.39

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Effects of computation and communication
in Jacobi iteration

Consequences of different numbers of processors done in
textbook.
Get:

6.40

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Locally Synchronous Computation
Heat Distribution Problem

An area has known temperatures along each of its edges.

Find the temperature distribution within.

6.41

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Divide area into fine mesh of points, hi,j.

Temperature at an inside point taken to be average of
temperatures of four neighboring points. Convenient to
describe edges by points.

Temperature of each point by iterating the equation:

(0 < i < n, 0 < j < n) for a fixed number of iterations or until
the difference between iterations less than some very
small amount.

6.42

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Heat Distribution Problem

6.43

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Natural ordering of heat distribution
problem

6.44

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Number points from 1 for convenience and include those
representing the edges. Each point will then use the
equation

Could be written as a linear equation containing the
unknowns xi-m, xi-1, xi+1, and xi+m:

Notice: solving a (sparse) system
Also solving Laplace’s equation.

6.45

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sequential Code

Using a fixed number of iterations

for (iteration = 0; iteration < limit; iteration++) {
for (i = 1; i < n; i++)

for (j = 1; j < n; j++)
g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]);

for (i = 1; i < n; i++) /* update points */
for (j = 1; j < n; j++)
h[i][j] = g[i][j];

}

using original numbering system (n x n array).

6.46

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

To stop at some precision:

do {
for (i = 1; i < n; i++)

for (j = 1; j < n; j++)
g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]);

for (i = 1; i < n; i++) /* update points */
for (j = 1; j < n; j++)

h[i][j] = g[i][j];

continue = FALSE; /* indicates whether to continue */
for (i = 1; i < n; i++)/* check each pt for convergence */

for (j = 1; j < n; j++)
if (!converged(i,j) {/* point found not converged */

continue = TRUE;
break;

}
} while (continue == TRUE);

6.47

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Parallel Code
With fixed number of iterations, Pi,j
(except for the boundary points):

Important to use send()s that do not block while waiting
for recv()s; otherwise processes would deadlock, each
waiting for a recv() before moving on - recv()s must be
synchronous and wait for send()s.

6.48

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Message passing for heat distribution problem

6.49

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Version where processes stop when they reach their
required precision:

6.50

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 6.51

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example
A room has four walls and a fireplace. Temperature of wall
is 20°C, and temperature of fireplace is 100°C. Write a
parallel program using Jacobi iteration to compute the
temperature inside the room and plot (preferably in color)
temperature contours at 10°C intervals using Xlib calls or
similar graphics calls as available on your system.

6.52

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sample student output

6.53

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Partitioning
Normally allocate more than one point to each processor,
because many more points than processors.
Points could be partitioned into square blocks or strips:

6.54

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Block partition
Four edges where data points exchanged.
Communication time given by

6.55

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Strip partition
Two edges where data points are exchanged.
Communication time is given by

6.56

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Optimum
In general, strip partition best for large startup time, and block
partition best for small startup time.

With the previous equations, block partition has a larger
communication time than strip partition if

6.57

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Startup times for block and
strip partitions

6.58

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Ghost Points

Additional row of points at each edge that hold values from
adjacent edge. Each array of points increased to
accommodate ghost rows.

6.59

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Safety and Deadlock

When all processes send their messages first and then
receive all of their messages is “unsafe” because it relies
upon buffering in the send()s. The amount of buffering is not
specified in MPI.

If insufficient storage available, send routine may be delayed
from returning until storage becomes available or until the
message can be sent without buffering.

Then, a locally blocking send() could behave as a
synchronous send(), only returning when the matching
recv() is executed. Since a matching recv() would never be
executed if all the send()s are synchronous, deadlock would
occur.

6.60

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Making the code safe

Alternate the order of the send()s and recv()s in adjacent
processes so that only one process performs the send()s
first.

Then even synchronous send()s would not cause
deadlock.

Good way you can test for safety is to replace message-
passing routines in a program with synchronous versions.

6.61

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

MPI Safe Message Passing Routines

MPI offers several methods for safe communication:

6.62

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Other fully synchronous problems
Cellular Automata

The problem space is divided into cells.

Each cell can be in one of a finite number of states.

Cells affected by their neighbors according to certain rules,
and all cells are affected simultaneously in a “generation.”

Rules re-applied in subsequent generations so that cells
evolve, or change state, from generation to generation.

Most famous cellular automata is the “Game of Life” devised
by John Horton Conway, a Cambridge mathematician.

6.63

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

The Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

1. Every organism with two or three neighboring organisms
survives for the next generation.

2. Every organism with four or more neighbors dies from
overpopulation.

3. Every organism with one neighbor or none dies from isolation.
4. Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

These rules were derived by Conway “after a long period of
experimentation.”

6.64

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Simple Fun Examples of Cellular
Automata

“Sharks and Fishes”

An ocean could be modeled as a three-dimensional array
of cells.
Each cell can hold one fish or one shark (but not both).

Fish and sharks follow “rules.”

6.65

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Fish
Might move around according to these rules:

1. If there is one empty adjacent cell, the fish moves to this
cell.

2. If there is more than one empty adjacent cell, the fish
moves to one cell chosen at random.

3. If there are no empty adjacent cells, the fish stays where it
is.

4. If the fish moves and has reached its breeding age, it
gives birth to a baby fish, which is left in the vacating cell.

5. Fish die after x generations.
6.66

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sharks
Might be governed by the following rules:

1. If one adjacent cell is occupied by a fish, the shark moves
to

this cell and eats the fish.
2. If more than one adjacent cell is occupied by a fish, the
shark chooses one fish at random, moves to the cell
occupied by the fish, and eats the fish.
3. If no fish are in adjacent cells, the shark chooses an

unoccupied adjacent cell to move to in a similar manner as
fish move.
4. If the shark moves and has reached its breeding age, it
gives birth to a baby shark, which is left in the vacating cell.
5. If a shark has not eaten for y generations, it dies.

6.67

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sample Student Output

6.68

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Similar examples:

“foxes and rabbits” - Behavior of rabbits to move around
happily whereas behavior of foxes is to eat any rabbits
they come across.

6.69

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Serious Applications for Cellular
Automata

Examples

• fluid/gas dynamics

• the movement of fluids and gases around objects

• diffusion of gases

• biological growth

• airflow across an airplane wing

• erosion/movement of sand at a beach or riverbank.

6.70

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Partially Synchronous
Computations

Computations in which individual processes operate
without needing to synchronize with other processes on
every iteration.

Important idea because synchronizing processes is an
expensive operation which very significantly slows the
computation and a major cause for reduced
performance of parallel programs is due to the use of
synchronization.

Global synchronization done with barrier routines.
Barriers cause processor to wait sometimes needlessly.

6.71

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Heat Distribution Problem Re-
visited

To solve heat distribution problem, solution space divided
into a two dimensional array of points. The value of each
point computed by taking average of four points around it
repeatedly until values converge on the solution to a
sufficient accuracy.

The waiting can be reduced by not forcing synchronization
at each iteration.

6.72

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 6.73

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

First section of code computing the next iteration values
based on the immediate previous iteration values is
traditional Jacobi iteration method.

Suppose however, processes are to continue with the next
iteration before other processes have completed.

Then, the processes moving forward would use values
computed from not only the previous iteration but maybe
from earlier iterations.

Method then becomes an asynchronous iterative method.

6.74

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Asynchronous Iterative
Method – Convergence

Mathematical conditions for convergence may be more
strict.

Each process may not be allowed to use any previous
iteration values if the method is to converge.

6.75

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Chaotic Relaxation

A form of asynchronous iterative method introduced by
Chazan and Miranker (1969) in which the conditions are
stated as:

“there must be a fixed positive integer s such that, in carrying
out the evaluation of the ith iterate, a process cannot make
use of any value of the components of the jth iterate if j < i - s”
(Baudet, 1978).

6.76

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

The final part of the code, checking for convergence of
every iteration can also be reduced. It may be better to
allow iterations to continue for several iterations before
checking for convergence.

6.77

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Overall Parallel Code

Each process allowed to perform s iterations before being
synchronized and also to update the array as it goes. At s
iterations, maximum divergence recorded. Convergence
is checked then.

The actual iteration corresponding to the elements of the
array being used at any time may be from an earlier
iteration but only up to s iterations previously. May be a
mixture of values of different iterations as array is
updated without synchronizing with other processes -
truly a chaotic situation.

6.78

