
Chapter 6

Synchronous Computations
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Synchronous Computations

In a (fully) synchronous application, all the processes 
synchronized at regular points.

Barrier
A basic mechanism for synchronizing processes - inserted 
at the point in each process where it must wait.

All processes can continue from this point when all the 
processes have reached it (or, in some implementations, 
when a stated number of processes have reached this 
point).
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Processes reaching barrier
at different times
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In message-passing systems, barriers provided with library
routines:

6.4



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

MPI
MPI_Barrier()

Barrier with a named communicator being the only 
parameter.

Called by each process in the group, blocking until all 
members of the group have reached the barrier call and 
only returning then.
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Barrier Implementation

Centralized counter implementation (a linear barrier):
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Good barrier implementations must take into account     
that a barrier might be used more than once in a process.

Might be possible for a process to enter the barrier for     
a second time before previous processes have left the 
barrier for the first time.
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Counter-based barriers often have two phases:

• A process enters arrival phase and does not leave this   
phase until all processes have arrived in this phase.

• Then processes move to departure phase and are released.

Two-phase handles the reentrant scenario.
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Example code:

Master:

for (i = 0; i < n; i++)       /*count slaves as they reach barrier*/
recv(Pany);

for (i = 0; i < n; i++)      /* release slaves */
send(Pi);

Slave processes:

send(Pmaster);
recv(Pmaster);
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Barrier implementation in
a message-passing system
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Tree Implementation
More efficient. O(log p) steps
Suppose 8 processes, P0, P1, P2, P3, P4, P5, P6, P7:

1st stage: P1 sends message to P0; (when P1 reaches its barrier)
P3 sends message to P2; (when P3 reaches its barrier)
P5 sends message to P4; (when P5 reaches its barrier)
P7 sends message to P6; (when P7 reaches its barrier)

2nd stage: P2 sends message to P0; (P2 & P3 reached their barrier)
P6 sends message to P4; (P6 & P7 reached their barrier)

3rd stage: P4 sends message to P0; (P4, P5, P6, & P7 reached barrier)
P0 terminates arrival phase;
(when P0 reaches barrier & received message from P4)

Release with a reverse tree construction.
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Tree barrier
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Butterfly Barrier
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Local Synchronization
Suppose a process Pi needs to be synchronized and to 
exchange data with process Pi-1 and process Pi+1 before 
continuing:

Not a perfect three-process barrier because process Pi-1 
will only synchronize with Pi and continue as soon as Pi 
allows. Similarly, process Pi+1 only synchronizes with Pi.
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Deadlock

When a pair of processes each send and receive from 
each other, deadlock may occur.

Deadlock will occur if both processes perform the send, 
using synchronous routines first (or blocking routines 
without sufficient buffering). This is because neither will 
return; they will wait for matching receives that are never 
reached.
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A Solution

Arrange for one process to receive first and then send 
and the other process to send first and then receive.

Example

Linear pipeline, deadlock can be avoided by arranging 
so the even-numbered processes perform their sends 
first and the odd-numbered processes perform their 
receives first.
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Combined deadlock-free blocking
sendrecv() routines

MPI provides MPI_Sendrecv() and MPI_Sendrecv_replace().
MPI sendrev()s actually has 12 parameters!
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Synchronized Computations

Can be classififed as:

• Fully synchronous
or

• Locally synchronous

In fully synchronous, all processes involved in the 
computation must be synchronized.

In locally synchronous, processes only need to 
synchronize with a set of logically nearby processes, not 
all processes involved in the computation
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Fully Synchronized Computation Examples

Data Parallel Computations

Same operation performed on different data elements
simultaneously; i.e., in parallel.

Particularly convenient because:

• Ease of programming (essentially only one program).

• Can scale easily to larger problem sizes.

• Many numeric and some non-numeric problems can be
cast in a data parallel form.
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Example

To add the same constant to each element of an array:

for (i = 0; i < n; i++)
a[i] = a[i] + k;

The statement:

a[i] = a[i] + k;

could be executed simultaneously by multiple processors, 
each using a different index i (0 < i <= n).
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Data Parallel Computation
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forall construct
Special “parallel” construct in parallel programming languages 
to specify data parallel operations

Example

forall (i = 0; i < n; i++) {
body

}

states that n instances of the statements of the body can be
executed simultaneously.

One value of the loop variable i is valid in each instance of the
body, the first instance has i = 0, the next i = 1, and so on.
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To add k to each element of an array, a, we can write

forall (i = 0; i < n; i++)
a[i] = a[i] + k;
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Data parallel technique applied to multiprocessors and 
multicomputers

Example

To add k to the elements of an array:

i = myrank;
a[i] = a[i] + k;        /* body */
barrier(mygroup);

where myrank is a process rank between 0 and n - 1.
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Data Parallel Example 
Prefix Sum Problem

Given a list of numbers, x0, …, xn-1, compute all the partial 
summations, i.e.:

x0 + x1; x0 + x1 + x2; x0 + x1 + x2 + x3; … ).

Can also be defined with associative operations other 
than addition.
Widely studied. Practical applications in areas such as 
processor allocation, data compaction, sorting, and 
polynomial evaluation.
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Data parallel method of adding all 
partial sums of 16 numbers
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Data parallel prefix sum operation
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Synchronous Iteration
(Synchronous Parallelism)

Each iteration composed of several processes that start 
together at beginning of iteration. Next iteration cannot 
begin until all processes have finished previous iteration.

Using forall construct:

for (j = 0; j < n; j++)             /*for each synch. iteration */
forall (i = 0; i < N; i++) {    /*N procs each using*/

body(i);                  /* specific value of i */
}
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Using message passing barrier:

for (j = 0; j < n; j++) {            /*for each synchr.iteration */
i = myrank;                /*find value of i to be used */
body(i);
barrier(mygroup);

}
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Another fully synchronous computation example

Solving a General System of Linear Equations by Iteration
Suppose the equations are of a general form with n equations 
and n unknowns

where the unknowns are x0, x1, x2, … xn-1 (0 <= i < n).
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By rearranging the ith equation:

This equation gives xi in terms of the other unknowns.
Can be be used as an iteration formula for each of the 
unknowns to obtain better approximations.
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Jacobi Iteration

All values of x are updated together.

Can be proven that Jacobi method will converge if diagonal 
values of a have an absolute value greater than sum of the 
absolute values of the other a’s on the row (the array of a’s is 
diagonally dominant) i.e. if

This condition is a sufficient but not a necessary condition.
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Termination

A simple, common approach. Compare values computed in 
one iteration to values obtained from the previous iteration. 
Terminate computation when all values are within given 
tolerance; i.e., when

However, this does not guarantee the solution to that accuracy.
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Convergence Rate
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Parallel Code
Process Pi could be of the form

x[i] = b[i];                                              /*initialize unknown*/
for (iteration = 0; iteration < limit; iteration++) {

sum = -a[i][i] * x[i];
for (j = 0; j < n; j++)                /* compute summation */

sum = sum + a[i][j] * x[j];
new_x[i] = (b[i] - sum) / a[i][i];    /* compute unknown */
allgather(&new_x[i]);                   /*bcast/rec values */
global_barrier();                          /* wait for all procs */

}

allgather() sends the newly computed value of x[i] from 
process i to every other process and collects data broadcast 
from the other processes.
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Introduce a new message-passing operation - Allgather.

Allgather

Broadcast and gather values in one composite construction.
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Partitioning

Usually number of processors much fewer than number 
of data items to be processed. Partition the problem so 
that processors take on more than one data item.
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block allocation – allocate groups of consecutive 
unknowns to processors in increasing order.

cyclic allocation – processors are allocated one unknown 
in order; i.e., processor P0 is allocated x0, xp, x2p, …, x((n/p)-1)p, 
processor P1 is allocated x1, xp+1, x2p+1, …, x((n/p)-1)p+1, and so 
on.

Cyclic allocation no particular advantage here (Indeed, 
may be disadvantageous because the indices of 
unknowns have to be computed in a more complex way).
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Effects of computation and communication 
in Jacobi iteration

Consequences of different numbers of processors done in 
textbook.
Get:
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Locally Synchronous Computation
Heat Distribution Problem

An area has known temperatures along each of its edges.

Find the temperature distribution within.
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Divide area into fine mesh of points, hi,j.

Temperature at an inside point taken to be average of 
temperatures of four neighboring points. Convenient to 
describe edges by points.

Temperature of each point by iterating the equation:

(0 < i < n, 0 < j < n) for a fixed number of iterations or until 
the difference between iterations less than some very 
small amount.
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Heat Distribution Problem
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Natural ordering of heat distribution 
problem
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Number points from 1 for convenience and include those 
representing the edges. Each point will then use the 
equation

Could be written as a linear equation containing the 
unknowns xi-m, xi-1, xi+1, and xi+m:

Notice: solving a (sparse) system
Also solving Laplace’s equation.
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Sequential Code

Using a fixed number of iterations

for (iteration = 0; iteration < limit; iteration++) {
for (i = 1; i < n; i++)

for (j = 1; j < n; j++)
g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]);

for (i = 1; i < n; i++)                        /* update points */
for (j = 1; j < n; j++)
h[i][j] = g[i][j];

}

using original numbering system (n x n array).
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To stop at some precision:

do {
for (i = 1; i < n; i++)

for (j = 1; j < n; j++)
g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]);

for (i = 1; i < n; i++)                       /* update points */
for (j = 1; j < n; j++)

h[i][j] = g[i][j];

continue = FALSE; /* indicates whether to continue */
for (i = 1; i < n; i++)/* check each pt for convergence */

for (j = 1; j < n; j++)
if (!converged(i,j) {/* point found not converged */

continue = TRUE;
break;

}
} while (continue == TRUE);
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Parallel Code
With fixed number of iterations, Pi,j
(except for the boundary points):

Important to use send()s that do not block while waiting 
for recv()s; otherwise processes would deadlock, each 
waiting for a recv() before moving on - recv()s must be 
synchronous and wait for send()s.
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Message passing for heat distribution problem
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Version where processes stop when they reach their 
required precision:
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Example
A room has four walls and a fireplace. Temperature of wall 
is 20°C, and temperature of fireplace is 100°C. Write a 
parallel program using Jacobi iteration to compute the 
temperature inside the room and plot (preferably in color) 
temperature contours at 10°C intervals using Xlib calls or 
similar graphics calls as available on your system.
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Sample student output
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Partitioning
Normally allocate more than one point to each processor, 
because many more points than processors.
Points could be partitioned into square blocks or strips:

6.54



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Block partition
Four edges where data points exchanged.
Communication time given by
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Strip partition
Two edges where data points are exchanged.
Communication time is given by
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Optimum
In general, strip partition best for large startup time, and block
partition best for small startup time.

With the previous equations, block partition has a larger 
communication time than strip partition if
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Startup times for block and 
strip partitions
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Ghost Points

Additional row of points at each edge that hold values from 
adjacent edge. Each array of points increased to 
accommodate ghost rows.
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Safety and Deadlock

When all processes send their messages first and then 
receive all of their messages is “unsafe” because it relies 
upon buffering in the send()s. The amount of buffering is not 
specified in MPI.

If insufficient storage available, send routine may be delayed 
from returning until storage becomes available or until the 
message can be sent without buffering.

Then, a locally blocking send() could behave as a 
synchronous send(), only returning when the matching 
recv() is executed. Since a matching recv() would never be 
executed if all the send()s are synchronous, deadlock would 
occur.
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Making the code safe

Alternate the order of the send()s and recv()s in adjacent
processes so that only one process performs the send()s 
first.

Then even synchronous send()s would not cause 
deadlock.

Good way you can test for safety is to replace message-
passing routines in a program with synchronous versions.
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MPI Safe Message Passing Routines

MPI offers several methods for safe communication:
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Other fully synchronous problems
Cellular Automata

The problem space is divided into cells.

Each cell can be in one of a finite number of states.

Cells affected by their neighbors according to certain rules, 
and all cells are affected simultaneously in a “generation.”

Rules re-applied in subsequent generations so that cells 
evolve, or change state, from generation to generation.

Most famous cellular automata is the “Game of Life” devised 
by John Horton Conway, a Cambridge mathematician.
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The Game of Life

Board game - theoretically infinite two-dimensional array of cells. 
Each cell can hold one “organism” and has eight neighboring cells, 
including those diagonally adjacent. Initially, some cells occupied.
The following rules apply:

1. Every organism with two or three neighboring organisms
survives for the next generation.

2. Every organism with four or more neighbors dies from
overpopulation.

3. Every organism with one neighbor or none dies from isolation.
4. Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

These rules were derived by Conway “after a long period of 
experimentation.”
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Simple Fun Examples of Cellular 
Automata

“Sharks and Fishes”

An ocean could be modeled as a three-dimensional array 
of cells.
Each cell can hold one fish or one shark (but not both).

Fish and sharks follow “rules.”
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Fish
Might move around according to these rules:

1. If there is one empty adjacent cell, the fish moves to this 
cell.

2. If there is more than one empty adjacent cell, the fish 
moves to one cell chosen at random.

3. If there are no empty adjacent cells, the fish stays where it
is.

4. If the fish moves and has reached its breeding age, it 
gives birth to a baby fish, which is left in the vacating cell.

5. Fish die after x generations.
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Sharks
Might be governed by the following rules:

1. If one adjacent cell is occupied by a fish, the shark moves 
to

this cell and eats the fish.
2. If more than one adjacent cell is occupied by a fish, the 
shark chooses one fish at random, moves to the cell 
occupied by the fish, and eats the fish.
3. If no fish are in adjacent cells, the shark chooses an

unoccupied adjacent cell to move to in a similar manner as 
fish move.
4. If the shark moves and has reached its breeding age, it 
gives birth to a baby shark, which is left in the vacating cell.
5. If a shark has not eaten for y generations, it dies.
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Sample Student Output
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Similar examples:

“foxes and rabbits” - Behavior of rabbits to move around 
happily whereas behavior of foxes is to eat any rabbits 
they come across.
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Serious Applications for Cellular 
Automata

Examples

• fluid/gas dynamics

• the movement of fluids and gases around objects

• diffusion of gases

• biological growth

• airflow across an airplane wing

• erosion/movement of sand at a beach or riverbank.
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Partially Synchronous 
Computations

Computations in which individual processes operate 
without needing to synchronize with other processes on 
every iteration.

Important idea because synchronizing processes is an 
expensive operation which very significantly slows the 
computation and a major cause for reduced 
performance of parallel programs is due to the use of 
synchronization.

Global synchronization done with barrier routines. 
Barriers cause processor to wait sometimes needlessly.
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Heat Distribution Problem Re-
visited

To solve heat distribution problem, solution space divided 
into a two dimensional array of points. The value of each 
point computed by taking average of four points around it 
repeatedly until values converge on the solution to a 
sufficient accuracy.

The waiting can be reduced by not forcing synchronization 
at each iteration.
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First section of code computing the next iteration values 
based on the immediate previous iteration values is 
traditional Jacobi iteration method.

Suppose however, processes are to continue with the next 
iteration before other processes have completed.

Then, the processes moving forward would use values 
computed from not only the previous iteration but maybe 
from earlier iterations.

Method then becomes an asynchronous iterative method.
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Asynchronous Iterative 
Method – Convergence

Mathematical conditions for convergence may be more 
strict.

Each process may not be allowed to use any previous 
iteration values if the method is to converge.
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Chaotic Relaxation

A form of asynchronous iterative method introduced by 
Chazan and Miranker (1969) in which the conditions are 
stated as:

“there must be a fixed positive integer s such that, in carrying 
out the evaluation of the ith iterate, a process cannot make 
use of any value of the components of the jth iterate if j < i - s”
(Baudet, 1978).
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The final part of the code, checking for convergence of 
every iteration can also be reduced. It may be better to 
allow iterations to continue for several iterations before 
checking for convergence.
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Overall Parallel Code

Each process allowed to perform s iterations before being 
synchronized and also to update the array as it goes. At s 
iterations, maximum divergence recorded. Convergence 
is checked then.

The actual iteration corresponding to the elements of the 
array being used at any time may be from an earlier 
iteration but only up to s iterations previously. May be a 
mixture of values of different iterations as array is 
updated without synchronizing with other processes -
truly a chaotic situation.

6.78


