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Parallel Techniques

• Embarrassingly Parallel Computations

• Partitioning and Divide-and-Conquer Strategies

• Pipelined Computations

• Synchronous Computations

• Asynchronous Computations

• Load Balancing and Termination Detection
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Chapter 3

Embarrassingly Parallel Computations
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Embarrassingly Parallel Computations
A computation that can obviously be divided into a number 
of completely independent parts, each of which can be 
executed by a separate process(or).

No communication or very little communication between 
processes
Each process can do its tasks without any interaction with 
other processes
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Practical embarrassingly parallel 
computation with static process 

creation and master-slave approach

3.4Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.



Practical embarrassingly parallel 
computation with dynamic process 
creation and master-slave approach
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Embarrassingly Parallel Computation
Examples

• Low level image processing

• Mandelbrot set

• Monte Carlo Calculations
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Low level image processing

Many low level image processing operations only 
involve local data with very limited if any 
communication between areas of interest.
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Some geometrical operations

Shifting
Object shifted by ∆x in the x-dimension and ∆y in the y-
dimension:

x′ = x + ∆x
y′ = y + ∆y

where x and y are the original and x′ and y′ are the new 
coordinates.

Scaling
Object scaled by a factor Sx in x-direction and Sy in y-
direction:

x′ = xSx
y′ = ySy
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Rotation

Object rotated through an angle q about the origin of 
the coordinate system:

x′ = x cosθ + y sinθ
y′ = -x sinθ + y cosθ
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Partitioning into regions for 
individual processes

Square region for each process (can also use strips)
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Mandelbrot Set
Set of points in a complex plane that are quasi-stable (will 
increase and decrease, but not exceed some limit) when 
computed by iterating the function

where zk +1 is the (k + 1)th iteration of the complex number  z 
= a + bi and c is a complex number giving position of point in 
the complex plane. The initial value for z is zero.

Iterations continued until magnitude of z is greater than 2 or 
number of iterations reaches arbitrary limit. Magnitude of z 
is the length of the vector given by
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Sequential routine computing value of 
one point returning number of iterations

structure complex {
float real;
float imag;
};
int cal_pixel(complex c)
{
int count, max;
complex z;
float temp, lengthsq;
max = 256;
z.real = 0; z.imag = 0;
count = 0;                                 /* number of iterations */
do {
temp = z.real * z.real - z.imag * z.imag + c.real;
z.imag = 2 * z.real * z.imag + c.imag;
z.real = temp;
lengthsq = z.real * z.real + z.imag * z.imag;
count++;
} while ((lengthsq < 4.0) && (count < max));
return count;
}
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Mandelbrot set
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Parallelizing Mandelbrot Set Computation

Static Task Assignment

Simply divide the region in to fixed number of parts, each 
computed by a separate processor.

Not very successful because different regions require 
different numbers of iterations and time.

Dynamic Task Assignment

Have processor request regions after computing previous
regions
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Dynamic Task Assignment
Work Pool/Processor Farms

3.14



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Monte Carlo Methods

Another embarrassingly parallel computation.

Monte Carlo methods use of random 
selections.
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Circle formed within a 2 x 2 square. Ratio of area of 
circle to square given by:

Points within square chosen randomly. Score kept 
of how many points happen to lie within circle.

Fraction of points within the circle will be       , given 
a sufficient number of randomly selected samples.
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Computing an Integral
One quadrant can be described by integral

Random pairs of numbers, (xr,yr) generated, each between 
0 and 1.
Counted as in circle if
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Alternative (better) Method
Use random values of x to compute f(x) and sum values of f(x):

where xr are randomly generated values of x between x1 and x2.

Monte Carlo method very useful if the function cannot be 
integrated numerically (maybe having a large number of 
variables)
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Example
Computing the integral

Sequential Code
sum = 0;
for (i = 0; i < N; i++) {               /* N random samples */
xr = rand_v(x1, x2);                 /* generate next random value */
sum = sum + xr * xr - 3 * xr;    /* compute f(xr) */
}
area = (sum / N) * (x2 - x1);

Routine randv(x1, x2) returns a pseudorandom number 
between x1 and x2.
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For parallelizing Monte Carlo code, must address best way to
generate random numbers in parallel - see textbook
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