
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Parallel Techniques

• Embarrassingly Parallel Computations

• Partitioning and Divide-and-Conquer Strategies

• Pipelined Computations

• Synchronous Computations

• Asynchronous Computations

• Load Balancing and Termination Detection

3.1

Chapter 3

Embarrassingly Parallel Computations

3.2Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Embarrassingly Parallel Computations
A computation that can obviously be divided into a number
of completely independent parts, each of which can be
executed by a separate process(or).

No communication or very little communication between
processes
Each process can do its tasks without any interaction with
other processes

3.3

Practical embarrassingly parallel
computation with static process

creation and master-slave approach

3.4Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Practical embarrassingly parallel
computation with dynamic process
creation and master-slave approach

3.5Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Embarrassingly Parallel Computation
Examples

• Low level image processing

• Mandelbrot set

• Monte Carlo Calculations

3.6

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Low level image processing

Many low level image processing operations only
involve local data with very limited if any
communication between areas of interest.

3.7

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Some geometrical operations

Shifting
Object shifted by ∆x in the x-dimension and ∆y in the y-
dimension:

x′ = x + ∆x
y′ = y + ∆y

where x and y are the original and x′ and y′ are the new
coordinates.

Scaling
Object scaled by a factor Sx in x-direction and Sy in y-
direction:

x′ = xSx
y′ = ySy

3.8

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Rotation

Object rotated through an angle q about the origin of
the coordinate system:

x′ = x cosθ + y sinθ
y′ = -x sinθ + y cosθ

3.8

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Partitioning into regions for
individual processes

Square region for each process (can also use strips)

3.9

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Mandelbrot Set
Set of points in a complex plane that are quasi-stable (will
increase and decrease, but not exceed some limit) when
computed by iterating the function

where zk +1 is the (k + 1)th iteration of the complex number z
= a + bi and c is a complex number giving position of point in
the complex plane. The initial value for z is zero.

Iterations continued until magnitude of z is greater than 2 or
number of iterations reaches arbitrary limit. Magnitude of z
is the length of the vector given by

3.10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Sequential routine computing value of
one point returning number of iterations

structure complex {
float real;
float imag;
};
int cal_pixel(complex c)
{
int count, max;
complex z;
float temp, lengthsq;
max = 256;
z.real = 0; z.imag = 0;
count = 0; /* number of iterations */
do {
temp = z.real * z.real - z.imag * z.imag + c.real;
z.imag = 2 * z.real * z.imag + c.imag;
z.real = temp;
lengthsq = z.real * z.real + z.imag * z.imag;
count++;
} while ((lengthsq < 4.0) && (count < max));
return count;
}

3.11

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Mandelbrot set

3.12

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Parallelizing Mandelbrot Set Computation

Static Task Assignment

Simply divide the region in to fixed number of parts, each
computed by a separate processor.

Not very successful because different regions require
different numbers of iterations and time.

Dynamic Task Assignment

Have processor request regions after computing previous
regions

3.13

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Dynamic Task Assignment
Work Pool/Processor Farms

3.14

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Monte Carlo Methods

Another embarrassingly parallel computation.

Monte Carlo methods use of random
selections.

3.15

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Circle formed within a 2 x 2 square. Ratio of area of
circle to square given by:

Points within square chosen randomly. Score kept
of how many points happen to lie within circle.

Fraction of points within the circle will be , given
a sufficient number of randomly selected samples.

3.16

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved. 3.17

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Computing an Integral
One quadrant can be described by integral

Random pairs of numbers, (xr,yr) generated, each between
0 and 1.
Counted as in circle if

3.18

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Alternative (better) Method
Use random values of x to compute f(x) and sum values of f(x):

where xr are randomly generated values of x between x1 and x2.

Monte Carlo method very useful if the function cannot be
integrated numerically (maybe having a large number of
variables)

3.19

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

Example
Computing the integral

Sequential Code
sum = 0;
for (i = 0; i < N; i++) { /* N random samples */
xr = rand_v(x1, x2); /* generate next random value */
sum = sum + xr * xr - 3 * xr; /* compute f(xr) */
}
area = (sum / N) * (x2 - x1);

Routine randv(x1, x2) returns a pseudorandom number
between x1 and x2.

3.20

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen, @ 2004 Pearson Education Inc. All rights reserved.

For parallelizing Monte Carlo code, must address best way to
generate random numbers in parallel - see textbook

3.21

