
Parallel AlgorithmsParallel Algorithms

Examples Examples 
Concepts & DefinitionsConcepts & Definitions
Analysis of AlgorithmsAnalysis of Algorithms



LemmaLemma

Any complete binary tree with n leaves hasAny complete binary tree with n leaves has
internal nodes = ninternal nodes = n--1  (i.e., 2n1  (i.e., 2n--1 total nodes)1 total nodes)
height = logheight = log22 nn

Exercise: Prove it.Exercise: Prove it.



Warming upWarming up
Consider the BTIN (Binary Tree Interconnected Consider the BTIN (Binary Tree Interconnected 
Network) computational model. Suppose the tree Network) computational model. Suppose the tree 
has n leaves (and hence 2nhas n leaves (and hence 2n--1 processors).1 processors).
If we have n numbers stored at the leaves, how can If we have n numbers stored at the leaves, how can 
we obtain the sum?we obtain the sum?
How can we obtain the max or min?How can we obtain the max or min?
How can we propagate a number stored at the root How can we propagate a number stored at the root 
to all leaves?to all leaves?



Warming upWarming up
Suppose we have nSuppose we have n--1 numbers stored  at n1 numbers stored  at n--1 1 
arbitrary leaves. How can we move these numbers arbitrary leaves. How can we move these numbers 
to the nto the n--1 internal nodes?1 internal nodes?
If the leftmost n/2 leaves have numbers, how can If the leftmost n/2 leaves have numbers, how can 
we move them the rightmost leaves?we move them the rightmost leaves?
How many steps does each of the above How many steps does each of the above 
computation requirecomputation require??



Example 1.4 Example 1.4 
Grouping in a sharedGrouping in a shared--Memory PCMemory PC

Given a sequence of pairs {(xGiven a sequence of pairs {(x11, d, d11), ), ……, (, (xxnn, , ddnn)} )} 
where xwhere xii ∈∈ {0, 1, .., m{0, 1, .., m--1}, m < n, and 1}, m < n, and ddii is an is an 
arbitrary datum.arbitrary datum.
By pigeonhole principle several xBy pigeonhole principle several xii will be will be 
repeated because m < n. Write a parallel repeated because m < n. Write a parallel 
algorithm to group these pairs according to the algorithm to group these pairs according to the 
xxii’’ss..



Example 1.4 Example 1.4 
Grouping in a sharedGrouping in a shared--Memory ModelMemory Model

Sequential algorithm: for each step i, read x and 
insert it in the hash table.
Time = n steps                Memory = Θ(n) 

0 1 m-1



Example 1.4:  Example 1.4:  Parallel algorithmParallel algorithm
Grouping in a sharedGrouping in a shared--Memory ModelMemory Model

Shared memory with n processors P11, P22, .., Pnn

Memory = m(2n-1) 
Think about m complete BT T00, T11, ..., Tmm--11 each with n 
leaves numbered 1, 2, .., n which corresponds to P11,.., Pnn .

0 1 m-1

T00 T11 Tmm--11

1 n 1 1n n 1 n



Example 1.4:  Example 1.4:  Parallel algorithmParallel algorithm
Grouping in a sharedGrouping in a shared--Memory ModelMemory Model
Phase 1: Each processor Pii will read the pair (xii, dii) and 
insert it in the leaf i that belongs to the tree Txii

Phase 2: Each processor Pii will try to move the pair (xii, dii)
higher up in its tree until it can go no higher as follows:

0 1 m-1

T00 T11 Tmm--11

1 n 1 1n n 1 n



Example 1.4:  Example 1.4:  Parallel algorithmParallel algorithm
Grouping in a sharedGrouping in a shared--Memory ModelMemory Model

Shifting-up rule:

If node u is free, then the pair in the right child 
(if any) takes precedence in moving to u over 
the pair in the left child (if any).



Example 1.4:  Example 1.4:  Parallel algorithmParallel algorithm
AnalysisAnalysis

Since in shared memory parallel computer we have 
common program for all processors and they execute 
synchronously, then
Phase 1: takes 1 step only
Phase 2: it takes log22 n steps only because each tree 
has height = log22 n.
Total = log22 n +  1      steps  
Extra empty cells in the m(2n-1) memory can be 
released. 



Example: 1.5Example: 1.5
Pipelining database in a BTIN modelPipelining database in a BTIN model

In a BTIN with n leaves (processors) containing In a BTIN with n leaves (processors) containing 
n distinct records each of the form (k, d) where n distinct records each of the form (k, d) where 
k is a key and d is a datum.k is a key and d is a datum.
Suppose that the root receives a query to Suppose that the root receives a query to 
retrieve the record whose key is K (if it exists)retrieve the record whose key is K (if it exists)
Write a parallel algorithm.Write a parallel algorithm.



Example: 1.5Example: 1.5
Pipelining database in a BTIN modelPipelining database in a BTIN model

Sequential Algorithm:Sequential Algorithm: Use Use binary search binary search 
algorithmalgorithm after sorting the records according to after sorting the records according to 
the keys. the keys. 
Time = Time = ΘΘ(n log n)(n log n)



Example: 1.5: Example: 1.5: Parallel AlgorithmParallel Algorithm
Pipelining database in a BTIN modelPipelining database in a BTIN model

The root sends the key K to its children which they send The root sends the key K to its children which they send 
subsequently to their children and so on.subsequently to their children and so on.
Until it reaches the leaves where it is compared with the Until it reaches the leaves where it is compared with the 
keys they stored there.keys they stored there.
The leaf that contains the key is going to send up the The leaf that contains the key is going to send up the 
corresponding record to  the root through its parent and corresponding record to  the root through its parent and 
grandparents. Other leaves will send null message.grandparents. Other leaves will send null message.
When a parent receives a record from one of its children When a parent receives a record from one of its children 
then it will send the same record to its parent; otherwise it then it will send the same record to its parent; otherwise it 
will send null.will send null.
and so on ...and so on ...



Example: 1.5Example: 1.5
AnalysisAnalysis

This is called pipeline technique.This is called pipeline technique.
All processor have the same program working All processor have the same program working 
asynchronously when they receive messages from asynchronously when they receive messages from 
parents or children.parents or children.
Time = 2 Time = 2 log22 n  steps to send the key down the tree 
and receive back the record.



Example: 1.5: Example: 1.5: Parallel AlgorithmParallel Algorithm
Pipelining database in a BTIN modelPipelining database in a BTIN model

What if we make m queries K1, K2, ..., Km?What if we make m queries K1, K2, ..., Km?

Solution: Solution: 
Sends them sequentially one after another Sends them sequentially one after another 
Total time =Total time = 2 2 log22 n + m - 1



Example 1.6Example 1.6
Prefix (Partial) SumsPrefix (Partial) Sums

Given n numbers xGiven n numbers x00, x, x11, ..., x, ..., xnn--11 where n is a where n is a 
power of 2.power of 2.
Compute the partial sums for all k =0, 1, .., nCompute the partial sums for all k =0, 1, .., n--11

SSkk = x= x00 + x+ x1 1 + ... + + ... + xxkk



Example 1.6Example 1.6
Prefix (Partial) SumsPrefix (Partial) Sums

Sequential Algorithm:Sequential Algorithm:

We need to make the unavoidable nWe need to make the unavoidable n--1 additions.1 additions.



Example 1.6: Example 1.6: Parallel AlgorithmParallel Algorithm
Prefix (Partial) SumsPrefix (Partial) Sums

For i = 0, 1, ...nFor i = 0, 1, ...n--1, let initially 1, let initially SSii = x= xi i 

Then for j =0, ..., Then for j =0, ..., log22 n – 1, let let 
SSii ←← SSii + S+ Sii--2^2^j         j         until 2^j = iuntil 2^j = i

This is can be done using the This is can be done using the combinatorial combinatorial 
Circuit modelCircuit model with n(with n(log22 n +1) processors 
distributed over log22 n +1 columns and n rows.
at each step we add the one that is at distance at each step we add the one that is at distance 
equal to twice the distance we use in the equal to twice the distance we use in the 
previous step.previous step.



Example 1.6: Example 1.6: Parallel AlgorithmParallel Algorithm
AnalysisAnalysis

The number of processors in the model  is The number of processors in the model  is 
n(n(log22 n +1) 
The number of columns is log22 n +1
Each processor does at most one step (addition).
The processors in any fixed column work in 
parallel. 
Time = log22 n +1 additions.



SummarySummary

At the cost of At the cost of increasing the computation power increasing the computation power 
(the number of processors(the number of processors & memory& memory) we may ) we may 
be able to be able to decrease the computation time decrease the computation time 
drasticallydrastically..

!!Expensive computations!!!!Expensive computations!!
Is it worth it?Is it worth it?



Is it worth it?Is it worth it?

Parallel computation is done mainly to speed up Parallel computation is done mainly to speed up 
computations, while requiring huge processing computations, while requiring huge processing 
power.power.
To produce To produce TeraTera FLOPS, the number of CPUs FLOPS, the number of CPUs 
in a massively parallel computer can reach 100s in a massively parallel computer can reach 100s 
of 1000s.of 1000s.
This is OK if parallel computing is cheap This is OK if parallel computing is cheap 
enough comparing to the critical  time reduction enough comparing to the critical  time reduction 
of the problem we are solving. of the problem we are solving. 
In the close future, TFLOPS will be available by In the close future, TFLOPS will be available by 
a single Intel Chip!!a single Intel Chip!!



Is it worth it?Is it worth it?

This is indeed the case with many applications in This is indeed the case with many applications in 
medicine, business, and science thatmedicine, business, and science that

Process huge database,Process huge database,
Deal with live streams from huge number of Deal with live streams from huge number of 
sourcessources
require huge number of iterationsrequire huge number of iterations



Analysis of Parallel AlgorithmsAnalysis of Parallel Algorithms

Complexity of algorithms is measured byComplexity of algorithms is measured by
TimeTime
Parallel steps Parallel steps 
Number of CPUsNumber of CPUs



Elementary StepsElementary Steps

1.1. Computational Steps:Computational Steps: basic arithmetic or basic arithmetic or 
logical operations performed within a logical operations performed within a 
processor, e.g., comparisons, additions, processor, e.g., comparisons, additions, 
swapping, ..etc swapping, ..etc 
Each takes a constant number of time unitsEach takes a constant number of time units



Elementary StepsElementary Steps

2.2. Routing Steps:Routing Steps: steps used by the algorithm to steps used by the algorithm to 
move data from one processors to another via move data from one processors to another via 
sharedshared--memory or interconnections. memory or interconnections. 

It is different in sharedIt is different in shared--memory models than memory models than 
in the interconnection models.in the interconnection models.



Routing in SharedRouting in Shared--memorymemory

In sharedIn shared--memory models:memory models: the interchange is the interchange is 
done by accessing the common memory done by accessing the common memory 
It is assumed that it  can be done in It is assumed that it  can be done in 

constant time in the uniform model constant time in the uniform model 
(unrealistic but easy to assume)(unrealistic but easy to assume)
O(logO(log M) in the nonM) in the non--uniform model with uniform model with 
memory of size M.memory of size M.



Routing in InterconnectionsRouting in Interconnections

In interconnection models:In interconnection models: the routing step is the routing step is 
measured by the number of links the message measured by the number of links the message 
has to follow in order to reach the destination has to follow in order to reach the destination 
processor.processor.
That is, it is the distance of the shortest path That is, it is the distance of the shortest path 
between the source and the destination between the source and the destination 
processors. processors. 



Performance MeasuresPerformance Measures

1.1. Running timeRunning time
2.2. SpeedupSpeedup
3.3. WorkWork
4.4. CostCost

1.1. Cost optimalityCost optimality
2.2. EfficiencyEfficiency

5.5. Success ratioSuccess ratio



1. Running Time1. Running Time
It is measured by the It is measured by the number of elementary number of elementary 
stepssteps (computational and routings) the algorithm (computational and routings) the algorithm 
does does from the time the first processor starts to from the time the first processor starts to 
work to the finishing timework to the finishing time of last processor.of last processor.
Example:Example:

P1 performs 13 steps, then idle for 3 steps, then 4 P1 performs 13 steps, then idle for 3 steps, then 4 
steps more.steps more.

P2 performs 11 steps continuouslyP2 performs 11 steps continuously

P3 performs 5 steps, then 11 steps more.P3 performs 5 steps, then 11 steps more.

Total = 20 stepsTotal = 20 steps



1. Running Time1. Running Time

The running time depends on the size of input The running time depends on the size of input 
and the number of processors which may and the number of processors which may 
depend on input.depend on input.

Some time we writeSome time we write ttpp to denote the running 
time of a parallel algorithm that runs on a 
computer with p processors. 



2. Speedup2. Speedup

The speedup is defined by The speedup is defined by 

S(1,p) =   S(1,p) =   tt1 1 //ttpp

the best time known for seq. the best time known for seq. algalg..
the time for par. the time for par. algalg. with p CPUs. with p CPUs==



Speedup Folklore TheoremSpeedup Folklore Theorem

Theorem:     The speedup S(1,p)  Theorem:     The speedup S(1,p)  ≤≤ pp
Proof:Proof:

The parallel algorithm can be simulated by a The parallel algorithm can be simulated by a 
sequential one in sequential one in ttpp ×× pp time (in the trivial way)time (in the trivial way)

Since Since tt1 1 is an optimal time then is an optimal time then tt1 1 ≤≤ ttpp ×× p p 

That is  That is  tt11 / / ttpp ≤≤ p  p  ..... Right ? ..... Right ? 
Well not really!!! Well not really!!! True only for algorithms that can True only for algorithms that can 
be simulated by sequential computers in be simulated by sequential computers in ttpp ×× p p 
time time 



Speedup Folklore TheoremSpeedup Folklore Theorem

Theorem:     The speedup S(1,p)  Theorem:     The speedup S(1,p)  ≤≤ pp

Conclusions:Conclusions:
First,First, ttpp ≥≥ tt11/p/p
This means that the running time of anyThis means that the running time of any
parallel algorithmparallel algorithm ttpp cannot be better than cannot be better than tt11/p/p
Second, Second, a good parallel algorithma good parallel algorithm is the one is the one 
whose speedup whose speedup is very closeis very close to the number of to the number of 
processors.processors.



Example 1.14: Adding n numbersExample 1.14: Adding n numbers

Adding n numbers can be done in sequential Adding n numbers can be done in sequential 
computer by using ncomputer by using n--1 additions.1 additions.
In parallel computer, it can be done in In parallel computer, it can be done in O(logO(log n) n) 
steps by using BTIN model. steps by using BTIN model. 
The tree has n/log n leaves.The tree has n/log n leaves.
Each leaf processor adds log n numbersEach leaf processor adds log n numbers
Each parent adds the number of its children and Each parent adds the number of its children and 
so on.so on.
The root will contain the resultThe root will contain the result..



AnalysisAnalysis

Time to add numbers in each processor = Time to add numbers in each processor = O(logO(log n) stepsn) steps

Time to propagate = Time to propagate = O(logO(log n) stepsn) steps

Speedup = Speedup = O(nO(n/log n)/log n)

log ( n/log n)

n/log n1 2



Example 1.15: Example 1.15: 
Searching in Shared Memory ModelSearching in Shared Memory Model

Given Given a number xa number x and an array and an array A[1..n]A[1..n]
containing n distinct numberscontaining n distinct numbers sorted sorted 
increasingly, increasingly, all  stored in a memory.  all  stored in a memory.  
Write a parallel algorithm that searches for x in Write a parallel algorithm that searches for x in 
the list and returns its position.the list and returns its position.



Example 1.15: Example 1.15: 
Searching in Shared Memory ModelSearching in Shared Memory Model
Sequential algorithm:Sequential algorithm: binary search algorithm binary search algorithm 
can solve the problem in can solve the problem in O(logO(log n) timen) time..
However, one can achieve However, one can achieve O(1) parallel timeO(1) parallel time!!
In shared memory model with n processors let In shared memory model with n processors let 
each processor each processor PPii compares compares xx with the cell with the cell A[iA[i]]
Specify a location in the memory call it Specify a location in the memory call it answeranswer; ; 
initially initially answer=0.answer=0.
Any processor that finds x will write Any processor that finds x will write its indexits index in in 
the location the location answeranswer. . 
I.e. if answer=i, then  PI.e. if answer=i, then  Pii finds x in finds x in A[iA[i]]



Example 1.15: Example 1.15: 
AnalysisAnalysis

Surely the overall time is O(1) steps.Surely the overall time is O(1) steps.
Speedup = Speedup = O(logO(log n) n) ≤≤ n = # of processors usedn = # of processors used

Is it possible to use only Is it possible to use only O(logO(log n) processors to n) processors to 
achieve the same performance?achieve the same performance?



How about searching How about searching 
in the BTIN model?in the BTIN model?

Use the BTIN model with n leaves (and 2nUse the BTIN model with n leaves (and 2n--1 total 1 total 
processors) processors) 
The leaf processor PThe leaf processor Pii holds holds A[iA[i]]
The root will take the input x and propagates it to The root will take the input x and propagates it to 
the leaves and the answer will return back to the the leaves and the answer will return back to the 
root. root. 
Any parallel algorithm has to take at least Any parallel algorithm has to take at least ΩΩ(log n) (log n) 
to just traverse the links between the processors.to just traverse the links between the processors.
Speedup =O(1)Speedup =O(1) in the best which in the best which way smallerway smaller than than 
2n2n--1 the number of processors. 1 the number of processors. 



Having said that ...Having said that ...

It appears that the speedup Theorem It appears that the speedup Theorem is not is not 
always truealways true specially if the parallel computer has specially if the parallel computer has 
many different stream inputs which canmany different stream inputs which can’’t be t be 
simulated properly in a sequential computer.simulated properly in a sequential computer.
Counter Example: read 1.17.Counter Example: read 1.17.



Slowdown Folklore Theorem Slowdown Folklore Theorem 

Theorem:    Theorem:    if a certain problem can be solved with if a certain problem can be solved with p p 
processors in  processors in  ttpp time and with time and with q processors in  q processors in  ttqq time time 
where q < p, then where q < p, then 

ttpp ≤≤ ttqq ≤≤ ttpp +p +p ttpp /q /q 

That isThat is when the number of CPUs when the number of CPUs decreases from p to decreases from p to 
qq then the running time can slowdownthen the running time can slowdown by a factor of by a factor of 
(1+p/q) in the worst case.(1+p/q) in the worst case.
Or Or when the number of CPUs when the number of CPUs increases from q to pincreases from q to p
then the running time can be reducedthen the running time can be reduced by a factor of by a factor of 
1/(1+p/q) in the best case.1/(1+p/q) in the best case.



Idea of ProofIdea of Proof

Suppose that you have a parallel algorithm that Suppose that you have a parallel algorithm that 
runs on a computer with p processors.runs on a computer with p processors.
To run the same algorithm on a computer with q To run the same algorithm on a computer with q 
processors you need to processors you need to distribute distribute the tasks that the the tasks that the 
p processorsp processors do (do (at most p at most p ttpp stepssteps) ) into the into the q q 
processorsprocessors as evenly as possible. as evenly as possible. 
Thus, each processor will have to do at most         Thus, each processor will have to do at most         
p p ttpp /q /q steps  .... And so steps  .... And so ttqq ≤≤ ttpp +p +p ttpp /q./q.
For detail See Page 18For detail See Page 18



Slowdown Folklore TheoremSlowdown Folklore Theorem
(Brent(Brent’’s Theorem) s Theorem) 

Notice Notice that ifthat if q=1q=1, then  , then  
1 1 ≤≤ tt11 / / ttpp = S(1,p) = S(1,p) ≤≤ 1 +1 + pp

The Slowdown theoremThe Slowdown theorem is not always true is not always true 
specially when the distribution of input data or specially when the distribution of input data or 
the communications impose overhead on the the communications impose overhead on the 
running time. running time. 
See Example 1.19See Example 1.19



3. Number of Processors 3. Number of Processors 
... Why? ... Why? 

Algorithms (with same running time and on same models) but Algorithms (with same running time and on same models) but 
with less number of processors are preferred (less expensive).with less number of processors are preferred (less expensive).
Sometimes optimal times and speedups can be achieved with Sometimes optimal times and speedups can be achieved with 
certain number of processorscertain number of processors
A minimum number of processors may be required to have A minimum number of processors may be required to have 
successful computationssuccessful computations
Slowdown and speedup theorems show that number of Slowdown and speedup theorems show that number of 
processors is important.processors is important.
Certain computational models may not accommodate the Certain computational models may not accommodate the 
required number of processors. (e.g., perfect squares or prime required number of processors. (e.g., perfect squares or prime 
number)number)
In combinatorial circuits each CPU is used at most once. That In combinatorial circuits each CPU is used at most once. That 
gives an upper bound on the time. gives an upper bound on the time. 



4. The Work4. The Work

The WorkThe Work is defined to be theis defined to be the exact totalexact total
number of elementary steps executed by all number of elementary steps executed by all 
processors.processors.

Running time = maximumRunning time = maximum of elementary steps of elementary steps 
used by any processorused by any processor
Exercise:Exercise: Think about the combinatorial circuit Think about the combinatorial circuit 
model.model.



5. The Cost5. The Cost

The cost The cost C(nC(n)) is is an upper boundan upper bound on the total on the total 
number of elementary steps used by all number of elementary steps used by all 
processors, and defined asprocessors, and defined as

C(nC(n) = ) = t(nt(n) ) ×× p(np(n),), wherewhere
t(nt(n) = the running time) = the running time

p(np(n) = number of processors) = number of processors
Note:Note: not all processors are necessarily active not all processors are necessarily active 
during the during the t(nt(n) time units.) time units.
In combinatorial circuit model: In combinatorial circuit model: C(nC(n) = ) = p(np(n) ) by by 
definition.definition.



ExampleExample

Running timeRunning time = 8= 8

Cost Cost = 8 x 6 = 48= 8 x 6 = 48

WorkWork = 6+4+4 = 6+4+4 

+8+5+5+8+5+5

= 32= 32

RT RT ≤≤ Work Work ≤≤ Cost

P1P1 P6P6P2P2

steps

P3P3 P4P4 P5P5

7

6

1

2

3

4
5

8

Cost



5.1 Cost Optimality5.1 Cost Optimality

Notice that the cost is indeed the worst case Notice that the cost is indeed the worst case 
running time needed to simulate a parallel running time needed to simulate a parallel 
algorithm on a sequential computer (if it can be algorithm on a sequential computer (if it can be 
done).done).
For the following: we restricted For the following: we restricted ourselfourself to to 
““simulatesimulate--ableable”” parallel algorithms onlyparallel algorithms only..

1.1. If If ΩΩ((f(nf(n)) )) number of steps are needed to solve a number of steps are needed to solve a 
problem sequentially, problem sequentially, and the cost of and the cost of a parallel a parallel 
algorithm algorithm is is O(f(nO(f(n)), then we say that the )), then we say that the 
algorithm is algorithm is asymptotically cost optimalasymptotically cost optimal..



5.1 Cost Optimality5.1 Cost Optimality

Recall Example 1.14 of Adding n numbers via Recall Example 1.14 of Adding n numbers via 
BTIN. We used p=BTIN. We used p=O(nO(n/log n) processors to /log n) processors to 
achieve  achieve  O(logO(log n) running time.n) running time.
So the cost = So the cost = O(nO(n).).
But adding any n numbers need But adding any n numbers need ΩΩ(n) sequential (n) sequential 
steps. Thus the cost is optimal.steps. Thus the cost is optimal.
Notice:Notice: if we use BTIN with n leaves, the cost is if we use BTIN with n leaves, the cost is 
O(nO(n log n)log n) which is not optimal.which is not optimal.



This means that ..This means that ..

If If ΩΩ((f(nf(n)))) is a lower bound on the required is a lower bound on the required 
number of steps to solve a problem of size n, number of steps to solve a problem of size n, 
then then ΩΩ((f(n)/pf(n)/p)) is a lower bound on the running is a lower bound on the running 
time of parallel algorithm with p processors.time of parallel algorithm with p processors.

This follows from the speedup theorem which says that the This follows from the speedup theorem which says that the 
reduction in the running time is by at most a factor of 1/p.reduction in the running time is by at most a factor of 1/p.

Example: Any parallel algorithm that uses n Example: Any parallel algorithm that uses n 
processors needs processors needs ΩΩ(log n ) steps to sort n (log n ) steps to sort n 
numbers, because sequential sorting  needs numbers, because sequential sorting  needs ΩΩ(n (n 
log n) steps.log n) steps.



5.1 Cost Optimality5.1 Cost Optimality

2.2. The cost of a parallel algorithm is not optimal if an The cost of a parallel algorithm is not optimal if an 
equivalent sequential algorithm exists whose worst equivalent sequential algorithm exists whose worst 
case running time is better than the cost.case running time is better than the cost.

Recall Example 1.4 of grouping n pairs into m Recall Example 1.4 of grouping n pairs into m 
groups. We used n processors in a shared memory groups. We used n processors in a shared memory 
model to solve the problem in model to solve the problem in O(logO(log n) time. n) time. 
The cost is The cost is O(nO(n log n) steps which is log n) steps which is not optimalnot optimal
because the sequential algorithm uses because the sequential algorithm uses O(nO(n) steps.) steps.



5.1 Cost Optimality5.1 Cost Optimality

3. Unknown cost optimality is possible when we have 3. Unknown cost optimality is possible when we have 
parallel algorithm whose cost matches the best parallel algorithm whose cost matches the best 
known sequential running time but we donknown sequential running time but we don’’t know t know 
if the sequential running time is optimal. if the sequential running time is optimal. 

Example: Example: Matrix multiplication requires Matrix multiplication requires ΩΩ(n^2)  (n^2)  
steps. The best known sequential algorithm takes steps. The best known sequential algorithm takes 
ΩΩ((n^cn^c) where 2 < c < 2.38. We don) where 2 < c < 2.38. We don’’t know if it is t know if it is 
optimal though.optimal though.



5.2 Efficiency5.2 Efficiency

The efficiency of a parallel algorithm is defined byThe efficiency of a parallel algorithm is defined by

E(1,p) = E(1,p) = tt1 1 / (/ (p p ttpp) ,  ) ,  wherewhere

tt1 1 is the running time of the best known sequential is the running time of the best known sequential 
algorithm,algorithm,

ttpp is the running time of the parallel algorithm that is the running time of the parallel algorithm that 
runs on a computer with p processors.runs on a computer with p processors.



5.2 Efficiency5.2 Efficiency

If the parallel algorithm is within If the parallel algorithm is within our restrictionour restriction, , 
then then E(1,p) E(1,p) ≤≤ 1.1.
If If E(1,p) E(1,p) < 1, < 1, the parallel algorithm is not cost the parallel algorithm is not cost 
optimal   optimal   .... NOT GOOD.... NOT GOOD
If If E(1,p) E(1,p) = 1 and = 1 and tt11 is optimal, is optimal, then the parallel then the parallel 
algorithm is cost optimal   algorithm is cost optimal   .... GOOD.... GOOD
If If E(1,p) E(1,p) > 1, > 1, then the simulated sequential then the simulated sequential 
algorithm (if doable!) is faster than the parallel algorithm (if doable!) is faster than the parallel 
algorithm.    algorithm.    ... IDEAL... IDEAL
Read Example 1.26Read Example 1.26



SummarySummary

It is unfair to compare the running time of a It is unfair to compare the running time of a 
parallel algorithm parallel algorithm ttpp to the running time of the to the running time of the 
best known sequential algorithm best known sequential algorithm tt11..

We should compare the cost=We should compare the cost=p p ttpp to to tt11..



6. Success Ratio6. Success Ratio

Consider algorithms that solve problems correctly Consider algorithms that solve problems correctly 
with certain probabilities.with certain probabilities.
Let Let Pr(pPr(p) = the probability of success that a parallel ) = the probability of success that a parallel 
algorithm solves correctly a given problem.algorithm solves correctly a given problem.
Let Pr(1) = the probability of success that a Let Pr(1) = the probability of success that a 
sequential algorithm solves correctly the same given sequential algorithm solves correctly the same given 
problem.problem.
The The success ratiosuccess ratio is defined by is defined by 

Sr(1,p) = Sr(1,p) = Pr(pPr(p) /Pr(1)) /Pr(1)



6. Success Ratio6. Success Ratio

The The success ratiosuccess ratio is defined by is defined by 
sr(1,p) = sr(1,p) = Pr(pPr(p) /Pr(1)) /Pr(1)

The The scaled success ratioscaled success ratio is is 
ssr(1,p) = ssr(1,p) = Pr(pPr(p) /(p ) /(p ×× Pr(1) )Pr(1) )

Usually:  Usually:  sr(1,p) sr(1,p) ≤≤ p    and  ssr(1,p) p    and  ssr(1,p) ≤≤ 11


