
Load Balanced Parallel Radix Sort

Andrew Sohn
Computer Information Science Dept.
New Jersey Institute of Technology

Newark, NJ 07 102- 1982
sohn@cis.njit.edu

Abstract
Radix sort suffers from the unequal number of input keys due to the
unknown characteristics of input keys. We present in this report a
new radix sorting algorithm, called balanced radix sort which guar-
antees that each processor has exactly the same number of keys
regardless of the data characteristics. The main idea of balanced ra-
dix sort is to store any processor which has over n/P keys to its
neighbor processor, where n is the total number of keys and P is the
number of processors. We have implemented balanced radix sort on
two distributed-memory machines IBM SPZWN and Cray T3E.
Multiple versions of 32-bit and 64-bit integers and 64-bit doubles
are implemented in Message Passing Interface for portability. The
sequential and parallel versions consist of approximately 50 and
150 lines of C code respectively including parallel constructs. Ex-
perimental results indicate that balanced radix sort can sort OSG
integers in 20 seconds and 128M doubles in 15 seconds on a 64-pro-
cessor SPZWN while yielding over 40-fold speedup. When
compared with other radix sorting algorithms, balanced radix sort
outperformed, showing two to six times faster. When compared
with sample sorting algorithms, which are known to outperform all
similar methods, balanced radix sort is 30% to 100% faster based
on the same machine and key initialization.

1 Introduction
Parallel sorting is one of the important components in parallel com-
puting. As parallel computing becomes ubiquitous, the demand of
efficient parallel sorting ever increases. There are a large number of
parallel sorting algorithms developed, including Batcher’s bitonic
sorting, flash sorting, radix sorting, parallel merge sorting, sample
sorting, etc. Among the issues in parallel sorting are communica-
tion and data characteristics. Parallel sorting algorithms need to
address the two issues if they are to be successful for large problems
on large-scale parallel machines. Blelloch, et al. and Dusseau, et al.
present comparative studies of different parallel sorting algorithms
on CM-2 [3] and CM-5 under LogP [5,6], respectively.

Parallel sorting dates back to Batcher’s bitonic sorting [2]. Biton-
ic sorting consists of two steps: local sort and merge. Given a
locally sorted list, processors keep merging across processors in
pairs. The major advantage of bitonic sorting is its simplicity in
communication. Since all processors work in pairs, the communica-
tion pattern becomes very simple throughout the entire
computation. However, bitonic sorting can suffer from long com-
munication time depending upon the data characteristics. It is often
the case that the entire keys assigned to each processor need to be
exchanged due to data characteristics. Should this occur, the long

~emk.km to make digital or hard copies of all or part oftis work for
Personal Or CIassroom use is granted without fee provided fiat copies
are not made or distributed for profit or commercial advantage and hat
copies bear this notice and the till citation on the fti page. TO copy
oaewi% to republish, to post on servers or to redistribute to liti,
reqohes prior specific permission and/or a fee.
KS 98 Melbourne Australia
CoPyright ACM 1998 0-89791-998-x/98/ 7...$5.00

Yuetsu Kodama
Parallel Computer Architecture Laboratory

Electrotechnical Laboratory
I- l-4 Umezono, Tsukuba, Ibaraki 305, Japan

kodama@etl.go.jp

communication time will result when the number of keys is realis-
tically large. Bitonic sorting can also become complicated due to
the way the keys are kept on each processor. Half of the processors
can keep the keys in an ascending order while the remaining half
will keep in a descending order. Or, keys can always be kept in an
ascending order, in which case the way processors communicate
will change. Regardless of its complexity in implementation, biton-
ic sorting can be a choice due to its simplicity in communication.

Sample sort [7] has recently attracted much attention in parallel
sorting [12,10,8,9]. Sample sorting works by picking some splitters
randomly. These random splitters are used to separate the keys into
buckets. Those keys within each bucket are then locally sorted.
Some load balancing steps may be necessary since buckets may not
necessarily have the same or a similar number of keys. Random
sample sorting thus depends heavily on how these splitters are
picked. To avoid these random splitters, samples are picked regu-
larly from the sorted list, called regular sample sorting. Gerbessiotis
and Siniolakis studied sample sorting using the BSP model [8,14].
Helman, Bader, and JBJB, indicated that regular sample sort seems
to outperform all similar methods [9]. A drawback of sample sort-
ing is that it can be complicated since picking splitters and division
of keys involve somewhat complex procedures [3].

Radix sort is often used on parallel machines due to its simplicity
in implementation. The idea behind radix sort is bin sorting to treat
processors as bins. Scanning a radix of some bits, keys are stored at
the corresponding bins (or processors). Radix sort typically in-
volves four steps in each round of radix: bin counting, local
moving, global prefix sum of bin counts, and communication. The
main problem with radix sort however is its irregularity in compu-
tation and communication. Since data characteristics are usually
unknown a priori, it is not clear how much computation and com-
munication each processor will take. Second, it is unlikely that
processors receive a similar number of keys due again to the char-
acteristics of input keys.

It is the purpose of this report to introduce a new parallel radix
sorting algorithm, called load balanced radix sorting. The balanced
radix sorting guarantees that each processor has exactly the same
number of keys, thus eliminating the load balancing problem. The
idea is to first obtain the bin counts of all the processors, and then
compute which processors get how many keys from what bins and
what processors. Overloaded processors will spill keys to their im-
mediate neighbors. This computation is done with ooze all-to-all bin
count transpose operation. For 32.bit integers with the radix of 8
bits, balanced radix sort will need 4 all-to-all transpose operations
of bin count. Keys will be moved after all the bins and their keys
are located in the global processor space.

The paper is organized as follows. In section 2, we define the
load balancing problem of parallel radix sort. Section 3 presents the
key idea of balanced parallel radix sort. Section 4 gives implemen-
tation details and experimental results based on IBM SPZ-WN and
Cray T3E multiprocessors. Absolute performance of balanced ra-
dix sort is presented along with five initialization methods. In
section 5, we compare the performance of balanced radix sort with
other sorting methods. The last section concludes this report.

305

2 Load Imbalance in Parallel Radix Sort
Radix sorting is a very simple and yet powerful in terms of both log-
ic and implementation, Each processor locally scans keys using
some predefined number of bits to find local bin count. The keys are
scanned again and moved to appropriate bins within each processor
according to the bin count. Upon completion of this local computa-
tion, keys of the same bins from all the processors are collected into
a designated processor. This completes an iteration of simple radix
sort. The major problem with parallel radix sort, however, is the
load balancing problem. Due to the unknown characteristics of in-
put keys, some processors will have a lot of keys while some have
a few, The imbalance in the number of keys will result in unbal-
anced computations and in turn irregular communication. The
performance of parallel radix sort, therefore, is limited by the de-
gree of the load imbalance due to the characteristics of input keys.

Before we proceed to the load balance problem in radix sorting,
we list below the symbols used in this report:

l P is the number of processors.
l n is the problem size, i.e., the total number of keys.
9 g is the group of bits for each scanning (or round).
l r is the number of rounds each key goes through. Rounds and

passes will be used interchangeably.
l b is the number of bits for integer/doubles. We consider 32-bit

and 64-bit integers. Doubles are always 64 bits.
l B is the number of buckets (bins) for the given group of bits,

i.e., B = 28. Buckets and bins will be used interchangeably.

Serial radix sorting works as follows: Given the numbers of b
bits, a group of g consecutive bits is scanned from the least signifi-
cant bit. Keys are stored in 26 buckets according to the g bits. For b
bit integers, radix sort requires r = b/g rounds (passes) to sort the en-
tire keys. To be more precise, each round consists of two steps:
count and move. The count step first counts how many keys each
bucket has. This step identifies the global map of the keys for the
given bits by computing exclusive prefix sum of each bucket. Each
bucket will then be assigned a starting address according to the ex-
clusive prefix sum. The move step then examines the g bits of each
key to determine a bucket number. Given the bucket number, each
key is assigned a relative location within the bucket. The key is then
actually moved to that location to complete the move step.

Parallel radix sort is not much different from sequential radix
sort. The only difference is that the keys are stored across proces-
sors. Each processor can hold one to many buckets. Given P
processors and g bits, each processor will hold B/P buckets. To sim-
plify the discussion we assume B=P. A simple parallel radix sorting
consists of four steps:

1. Count: count the number of keys in each bucket by scanning
keys using g bits (local operation).

2. Move: move within each processor the keys to an appropriate
bucket by re-scanning all the keys (local operation).

3. Transpose: l-to-all transpose the bucket information across
processors to find the prefix sum (global operation).

4. Communication: send/receive keys to/from the destination/
source processors.

Let us consider sorting 40 keys on four processors, PO..P3. The
40 keys are initially distributed equally to four processors, each of
which holds 10 keys. Assume two bits are scanned in each round,
requiring four buckets BO..B3. Assume further that each processor
scanned the keys and moved them to appropriate buckets. Figure 1
shows a snapshot of the bins after the first two steps of count and
move. The snap shot indicates that the processors each scanned 10
keys and computed bin-counts. Processor 0 has four bins with the
bin counts of 1, 3,4, and 2. Pl has four bins with the bin counts of
3, 6, 1, and 0. Other processors have done similar bin counting.

BO Bl 82 B3

PO] 1 I3 I4 I2]

(a) PlI 3 16 11 1 0]

P2(0 13 15 12]

P3[1 12 12 15]

PO 1 1 1 3 [0 1 1) BO=5

Pl 3 6 3 2 B1=14 (b) (1 1 1 1

P2 1 4 (1 I 5 I 2 1 B2=12

P3 1 2 1 0 I 2 1 5 1 B3=9

Figure I: A round of typical radix sorting, consisting of bin
count and transpose the bin counts across processors.

Now that each processor has its own bin counts, the third step of
a l-to-all transpose operation is applied to all four processors to ob-
tain the global map of bin counts. After transposing the bin counts
across the four processors, each processor obtainsfbur counts of the
same bin. Processor 0 collects four BO’s from four processors, in-
cluding itself, Pl collects four B 1 ‘s, etc. Processor 0 finds that it has
5 keys in BO, PI has 14 keys in B 1, etc.

In the last step, processors send/receive keys to appropriate pro-
cessors according to the global key map. The four processors will
first send keys according to the map shown in Figure l(a). Proces-
sor 0 sends 3 keys of Binl to PI, 4 keys of Bin2 to P2, and 2 keys
of Bin3 to P3. Other processors do similar send operations. When
sending (or posting of send operations) is complete, processors will
receive keys according to the map shown in Figure l(b). Processor
0 will receive 3 keys from Pl, nothing from P2, and I key from P3.
When the keys are received, they will be stored according to the
rank of the source processor, assuming that processor ranks are pre-
served throughout the computation. Sending and receiving can be
done in any order as long as they are done correctly and efficiently.

When the first round is complete, the four processors now each
have a different number of keys. Processor 0 has only 5 keys, which
are half the original size. Processor 1 has 14 keys, 40% increase in
size. Processor 2 has 12 keys, 2 more than before. P3 has 9 keys,
one less than before. These varying numbers of keys will cause
heavy load imbalance both in computation and communication in
the second round. Bin counting and moving 14 keys will certainly
take more than twice the time taken for 5 keys. Sending and receiv-
ing yet undetermined numbers of keys will cause imbalance in
communication. The total execution time will therefore be deter-
mined by the processor that executes the critical path, i.e., the most
keys. Unfortunately, the characteristics of keys are often unknown
for real-world problems. Radix sorting based on the above method
will give poor performance as there is no mechanism to guarantee
an even distribution of keys across processors.

3 Load Balanced Parallel Radix Sort
Balanced radix sort is designed to eliminate the load imbalance
caused by the characteristics of keys. The nature of keys is no long-
er the bottleneck of parallel radix sort. To illustrate the new
balanced radix sort, we revisit the four steps of unbalanced radix
sort and list below with a slight modification:

l Count the number of keys in each bucket by scanning g bits.
l Move locally the keys to an appropriate bucket by re-scanning.

306

l All-to-all transpose the bin count information across proces-
sors. Each processor has the bin count of all processors.

l Send/receive the keys with its location information to the desti-
nation processors.

The first two steps of count and move are the same. The major
difference between the unbalanced and the balanced radix sort is in
the third step. The fourth step will be modified slightly to reflect the
change in the third step. The transpose operation now is all-to-all.
Each processor will have a complete map of bin counts across the
processors. In the unbalanced radix sort, it was sufficient for each
processor to have the same buckets collected from all other proces-
sors. Balanced radix sort, however, will have a complete bin count
of all processors. Based on this complete map of bin count, each bin
and their keys can be precisely located across processors. The send-
ing/receiving operations will be modified according to this new bin
count map. Figure 2 illustrates how this can be achieved. We con-
tinue to use the example shown in Figure I, where four processors
sort 40 keys.

Figure 2(a) shows the bin count after an all-to-all transpose oper-
ation. Now, this map is kept on all processors. (Figure 2(a) is the
same as Figure l(b).) Figure 2(b) is a load balanced map based on
the bin count shown in Figure 2(a). The thick lines indicate how the
bins will be split to generate an equal number of keys to each pro-
cessor. Each processor eventually gets the same number of keys, as
shown in Figure 2(c).

Given the global map of bin counts shown in Figure 2(a), each
nrocessor determines how it will collect the keys needed for itself.
it does so by simply scanning the map starting BO and identifies

BO

Bl
(4

82

B3

BO

Bl
(b)

82

83

PO

Pl

(4

P2

P3

1 1 I 3 I 0 I 1 I

13 16 13 12 1

I 4 I 1 I 5 I 2 I

I 2 I 0 I 2 I 5 I

I 1 I 3 I 0 I 1 I

I 3 12141 3 I 2 I

11131 1 (5 11111

I 2 I 0 I 2 I 5 I

cnt=5

cnt=l4

cnt=l2

cnt=9

cnt=lO

cnt=lO

cnt=l 0

cnt=lO

Figure 2: Converting the global count map to a load balanced
map. The map shown in (a), which is resulted from an all-to-
all transpose operation, is kept on all processors. The thick
lines in (b) show how bin counts will be split to achieve a bal-
anced number of keys.

how many keys are from what bins. In the above example, proces-
sor 0 determines that it will need six bins to make IO keys. It not
only needs the four BO’s collected from the four processors but also
extends its key gathering to two Bl’s. The four BO’s give only 6
keys which are not sufficient to make IO keys. PO will therefore
gather 3 keys from B I of its own and 2 keys from B 1 of processor
I. The key gathering decision spans six buckets over four proces-
sors, as shown in Figure 2(c).

Processor I determines to gather IO keys from three Bl’s and
one B2, as shown in Figure 2(c). It gathers four keys from B I of its
own, 3 keys from B I of P2,2 keys from B I of P3, and I key from
B2 of PO. The key gathering decision for PI spans four buckets over
four processors. Processors 2 and 3 similarly determine to gather IO
keys each. P2 finds IO keys from B2 of PO, PI, and P2. Processor 3
determines to gather 10 keys from B2 of P3 and four B3’s from four
processors. This step completes the decision on how keys will be
collected from various buckets and processors,

The last step will actually send or receive keys according to the
decision made in the extended prefix computations, It may appear
that the address computation is complex. And the sendinglreceiv-
ing can further complicate since much information is needed to
keep track of which part of buckets to send to where with how many
keys. However, all this information is already stored in the global
count map. Computing and keeping this information is straightfor-
ward as the experimental results will demonstrate.

The global all-to-all transpose operation gives each processor the
complete information of bin counts. As we will demonstrate short-
ly, this all-to-all transpose is trivial for reasonable data size since
we are collecting bin counters, not the actual keys. Given the com-
plete map of bin counts, each processor identifies the necessary
bins to collect n/P keys. This computation is also trivial once the
global count map is obtained.

4 Experimental Results and Discussion
4.1 Some implementation details
Balanced radix sort has been implemented on two distributed-
memory multiprocessors IBM SP2 Wide Node (WN) installed at
NASA Ames and Langley and Cray T3E installed at NERSC,
Lawrence Berkeley Laboratory. For each machine there are two
versions; SP2 versions have 32-bit integer and 64-bit double. T3E
versions include 64-bit integer and 64-bit double. All these versions
are somewhat different because of the way numbers are represent-
ed. For integer sorting, we used 8 bits in each round, requiring four
rounds for 32-bit integers on SP2 and eight rounds for 64-bit inte-
gers on T3E. Doubles are 64 bit numbers, consisting of I bit for
sign, I I bits for exponent, and 52 bits for mantissa. We used 8 bits
in each round for the low 48 bits and 4 bits for the remaining 4 bits
of mantissa. The total of 7 rounds is required for mantissa. Expo-
nents are split into two rounds: 8 bit radix for low exponent bits and
4 bit radix for high exponent bits.

Sorting often requires two to three buffers of the same data size
for various purposes. The first one is used for storing the original
keys. The second is used for storing immediate keys when sorting
is performed. The third one would be necessary for communication,
i.e., used as a communication buffer. Our implementation, howev-
er, uses only two buffers. The first one is used to store keys and the
second for buffering. Since our implementation required only two
buffers, each processor can sort up to 8M integers and 4M doubles.
The maximum data size of over 64 processors is 5 12 M integers and
256M doubles. This data size is significantly larger than the Split-
C implementation reported in [9] where the maximum of up to 1 M
integers per processor is used. Another reason we were able to sort
up to 8M integers per processor is that our implementation is por-
table based on Message Passing Interface (MPI) which requires no
special programming is runtime environment.

307

All of the above have been implemented in MPI for portability.
The programs are very compact and simple. Sequential radix sort-
ing is about 50 lines of C code. Balanced parallel radix sorting is
about 150 lines of C code which include MPI constructs. These
code sizes do not include array initialization and self-checking rou-
tines. The programs do not require any special features or special
runtime environment. If the machine supports MPI, the sorting rou-
tines will work with no modifications.

The keys are initialized with the five different methods used
in[9], including random, gauss, zero, bucket, and stagger. Random
simply calls the C random0 routine which initializes the full 32 bits
for integers. Doubles (64-bit) are split into two 32-bits, each of
which is initialized separately. Therefore, all the 64 bits of doubles
are fully initialized. Gauss initializes by adding the results of four
random0 calls and dividing it by four. Zero is essentially the same
as random except some keys set to zero. We set 10% of keys to zero
in each processor. Bucket and stagger initialization methods are
based on the methods described in [9]. These methods are designed
to create some artificial characteristics of keys. There are other ini-
tialization methods but we decided not to explore these variations.
As we shall see below, the balanced radix sort is not highly sensitive
to the characteristics of keys. We therefore find that the five differ-
ent initialization methods suffice to demonstrate the absolute and
relative performance of balanced parallel radix sort.

4.2 Absolute performance

Tables 1 and 2 list some execution results on 64 processors. The re-
sults show the relation between data size and various initialization
methods for integers and doubles. They are intended to give a feel
for the performance of the balanced radix sort algorithm. The inte-
ger results are listed under five different initialization methods.
Doubles used the gauss initialization method. Table 1 lists SPZWN
results while Table 2 lists T3E results.

of
integers

SP-2, 64 processors, 32.bit integers
I

64-bit
doubles

1M
2M
4M
8M

16M
32M
64M

128M
256M
512M

random gauss zero
0.137 0.135 0.136

0.181 0.182 0.179

0.264 0.254 0.252

0.399 0.395 0.414

0.684 0.678 0.750

1.142 1.167 1.308

2.178 2.225 2.477
4.272 4.465 4.905
9.250 9.485 9.601

18.673 19.427 18.900

bucket
0.116
0.170
0.212
0.330

0.560

1.148
2.286

4.598
10.000
19.656 :

Table Execution times (set) on a 64-processor SPZWN.

of
integers T Cray T3E, 64 processors, 64-bit integers

64-bit
doubles

1M
2M
4M
8M

16M
32M
64M

128M
256111
512M

- -
random

I

gauss zero bucket stagger
- -

0.221 0.228 0.191 -in-m 0.223

0.301 0.317 0.261 0.236 0.266
0.413 0.447 0.364 0.326 0.337
0.497 0.575 0.464 0.425 0.455

0.632 0.758 0.612 0.58 1 0.647
1.087 1.222 1.057 1.082 1.212
2.055 2.217 1.944 2.042 2.25.5
3.975 4.084 3.736 3.919 4.458
7598 7.693 7.312 7.616 9.052

18.474 19.787 17.715 18.270 20.445 - - :
Table 2: Execution times (set) on a 64-processor T3E.

gauss

0.220
0.307
0.450
0.576

0.752
I.314
2.518
4.904

Table 1 shows that SP2 can sort 512M integers in less than 2.5
seconds. Most of the initialization methods give similar results with
little variations, except the stagger method. Our results agree with
the results reported by Helman, Bader, and J&J& in 191, where stag-
ger gave the worst results. When comparing the results of integers
and doubles, we find that there is a substantial difference. It is
obvious because SP2 is a 32-bit machine. Doubles will take at least
twice the time as integers. In fact, it takes almost three times the in-
teger results because of cache effects. As data size becomes larger,
this effect becomes more apparent.

T3E results shown in Table 2 are slightly better than SP2 for in-
tegers in general, It is especially true when the data size is large.
The reasons are the faster clock and the faster network architecture
of T3E. SP2 incurs much overhead due to message passing. The
SP2 latency is typically over 40 usec while the T3E latency is a few
to 10 psec. This rather large difference in latency does make a dif-
ference on large data size as seen from the two tables. When
comparing the integer and double results for T3E, we find they are
essentially the same. Since T3E is a 64-bit machine, the results
must be very similar regardless of integers or doubles.

The difference between Gauss and Stagger for T3E is much
smaller than that for SP2. For SP2 in Table 1, the ratio of Stagger
to Gauss is 24.58Ul9.427 = 1.27, or 27%. However, for T3E, it is
20.44Yl9.187 = 1.07, or 7%. This difference in ratio is due to the
fact that fast communication can help tolerate the irregular data
characteristics of Stagger.

Figure 3 shows the relation between the number of processors
and initialization methods. The figure indicates that the effect of
initialization methods diminishes as the number of processors is in-
creased. The plots also suggest that balanced radix sort is scalable,
which is discussed below.

16

g 12
3

if .-

s a
.-
5
8
Iz

4

(a) SPP-WN, 8M 32-bit integers

I random
m gauss
p-;rT771 zero

bucket
- stagger

2 4 8 16 32

(b) T3E, 8M 64-bit integers

0 1 2 4 8 16 32 64
Number of processors

Figure 3: Execution times (set) of 8M integers.

308

4.3 Scalability of Balanced Radix Sort

The plots in Figure 4 demonstrate the scalability of balanced radix
sort. The results are based on Gauss initialization. We were able to
sort up to 8M integers on a single processor. Therefore, the results
for 1 M to 8M are compared against a single processor performance.

(a) SP2-WN, 32-bit integers

01 I 2 4 8 16 32 64 I

100
4

(b) T3E, 64-bit integers

01
I

2 4 8 16 32 64
Number of processors

Figure 4: Execution times (set) using Gauss initialization.

For the data size of up to 8M, SP2 shows over 40-fold speedup.
However, T3E gives only 20-fold speedup on 64 processors. The
two machines show a significant difference in scalability. The rea-
son T3E shows half the scalability of SP2 is because of its MPI
implementation. T3E is designed to use SHMEM programming en-
vironment to exploit the underlying architecture such as External
registers and stream features for fast remote memory operations.

Specifically, there are two reasons why T3E shows low scalabil-
ity when implemented in MPI. One is the large latency due to MPI
implementation. To help understand this low scalability, we list in
Table 3 some machine characteristics.

Programming Cray T3E I IBM SP2
paradigm

SHMEM put
SHMEM get
MPI

Latency Bandwidth Latency Bandwidth
1.3 336
1.5 336

12.8 108 40 45

Table 3: A brief comparison of the environments [15,11]. Latency
is in psec and bandwidth in MByteslsec.

As we note from the table, the MPI latency is about 10 times
more than the SHMEM one [151. The benchmark study on different
programming paradigms indicated that the native SHMEM remote
memory operation Put incurs 1.3 psec. On the other hand, MPI
Send incurs 12.8 vsec. The two latencies are different by an order

of magnitude! The reason such a large difference is that SHMEM
Put is one-sided communication while MPI Send is two-sided
communication. Depending on the low-level optimization, the MPI
construct requires the attention of two processors for eventual
handshaking. However, one-sided communication needs only one
processor’s attention. The rest is often left to the programmer.
While MPI can use non-blocking constructs which can help free the
processors from locking, this can also be left to programmers.

The second reason T3E shows low scalability is that the MPI im-
plementation does not adequately exploit the low-level hardware
features. Together with the External registers and the stream fea-
ture, SHMEM can exploit fine-grain communication. However,
MPI can be problematic when the communication is done in small
data size. For every send/receive operation, it requires an overhead
of copying the data to buffer, sending out, and confirming. Commu-
nication studies show that fine-grain communication on SP-2 with
MPI is inefficient [131. The study also indicated that there is a
threshold of how small the message size should be and how many
messages there should be for efficient communication. SP2 with
MPI is efficient when the message size is between 4KB to 16KB.

When the MPI version is translated to SHMEM version to take
advantage of the fine-grain one-sided communication features, we
expect that T3E will outperform the MPI implementation. This is-
sue is beyond the scope of this report and will be addressed in the
future. As we have emphasized earlier, our efforts are expended on
portability, being able to run on a variety of machines, not a specific
machine. Therefore, there is a trade-off between the native pro-
gramming implementation and the portable implementation.

4.4 Distribution of execution times
Identifying where the total execution times are spent, we will be
able to better understand how balanced radix fared. Recall that bal-
anced radix sort consists of four steps: local count, local move, all-
to-all transposition of bin counter, and communication of keys. Fig-
ure 5 illustrates how the executions times are spent on these four
steps. From the bottom to the top are count, move, transpose, and
communication. The top two entries are communication times and
the bottom two entries are local computation times. The plots are
for 64 processors. Thex-axis shows the problem size and the y-axis
the percentage of an individual execution time.

There are several observations we make from the bar charts:
First, computation is small for both machines while communication
dominates. However, as the problem size is increased, the compu-
tation time does proportionally increase. Second, the all-to-all
transpose time is substantial (10 to 20%) for small problem size of
1M to 4M. However, for reasonably sized problems, the time is
negligible. In fact, when the data size is over 32M, the time be-
comes a small percent of the total sorting time. Third, despite the
small transpose time, the overall communication times (the two top
entries of each bar) remain relatively constant across different ma-
chines and data type. This clearly indicates the nature of sorting
which states that sorting is communication intensive.

Since computation is very simple, it will not be straightforward
to further reduce the computation time. However, since communi-
cation dominates the overall sorting time, the next step for
developing fast sorting algorithms needs to expend efforts in reduc-
ing the communication time. In this study, we have not attempted
to optimize the communication part of sorting as our code size in-
dicates (parallel sorting has approximately 150 lines of C code). We
used the packaged parallel constructs included in MPI for all-to-all
transpose. The sending and receiving operations are simply done by
MPI constructs. We have made no efforts on message vectoriza-
tion, nor personalized communication since this will defeat the
purpose of simple parallel radix sorting. Our next step therefore is
to look into some possible improvements in communication.

309

100

0
100

0
100

0
100

0

(a) SP -WN, 64 , 3 -bit Integers, Gauss

1 M 2M 4M 8M 16M 32 64 128 256 5’ 12

IM 2M 41

M 2M 4M

16M32M 64 128 256 512

w
16M32M t

641 d, 6&!bit’dbut!l& %auss

sendlrecv

transpose

move

count

(d) E, 64 P, 4- i doubles, Gauss

1M 2M 4M 8M 16M32M64M 128 256 512
Number of keys

Figure 5: Dtstributton ot execution times. Listed trom the bot-
tom are local bin count, local key move, global all-to-all
counter transpose, and global sending/receiving of keys.

5 Comparison with Other Sorting Methods
The performance of balanced radix sort is compared against three
sorting methods: conventional unbalanced radix sort, regular sam-
ple sort, and random sample sort. The comparisons are based on the
results published in [1,9]. We believe the comparisons are fair be-
cause the initialization methods and machines are the same. Table
4 compares the results of the three different radix sortings on a 16-
processor IBM SPZWN. All the results use the same machine and
the same initialization methods [9].

init Execution time (seconds) Improvement

method
size

Balanced HBJ [!I] AIS [I] HBJlBal AlSlBal

Random 64K 0.076 0.107 0.474 1.4 6.2
IM 0.18s 0.592 0.938 3.2 5.1
8M 1.016 4.030 4.130 4.0 4.1

64M 10.198 n/a n/a -
Gauss 64K 0.073 0.109 0.475 1.5 6.5

1M 0.184 0.613 0.907 3.3 4.9
8M 1.019 4.120 4.220 4.0 4.1

64M IO.358 n/a n/a -

Table 4: Comparison of three 32-bit integer radix sorting
algorithms on a 16-processor SP2-WN. n/a=not available.

The results indicate that balanced radix sort outperformed the
other two radix sorting by a factor of three tofive for the data size
of over 1M. When the data size is very small, as 64K on 16 proces-
sors, balanced radix sort still preforms better by 40% to 600%. For
very large data size, the results of the other two sorting are not
available for comparison. The main reason that our radix sort out-
performed the other two radix sorts is because our method balances
computation.

It should be noted that the other two radix sorts are not necessar-
ily the best performing algorithms. It is thus not certain that the
radix sorting methods are compared fairly. To avoid this possible
unfairness, we compare balanced radix sorting with random sample
sorting and regular sample sorting which were implemented in
Split-C [4] and reported that they seem to outperform all similar al-
gorithms [9].

Table 5 compares the performance of balanced radix sort with
regular and random sample sorting on SPZ-WN. The performance
comparison on T3E was not possible because we were unable to
find sample sort data on T3E. Note that balanced radix sorting used
gauss initialization while sample sorting used WR initialization.
Note further that the results of random sample sort using Gauss are
essentially the same as those using WR: (gauss, WR) = (4.21,4.22),
(1.06, 1.07) (0.272, 0.269) and (0.701,0.710) [Table 1 of ref. 91.
Therefore, we believe it is fair to compare Gauss results of balanced
radix sort with WR results of sample sort.

-
P=8
-
1.52
2.41
3.12 -
1.6
2.1 -

P=l6

0.83
1.24 r 1.57
1.5
1.9

P=32

0.455
0.696
0.864

1.5
1.9

Table 5: Comparison on SP2-WN with 8M integers. *Gauss
performs essentially the same as WR [9]. Ran = random sample

sorting, Reg = regular sample sorting, Bal = balanced radix sorting.

The results indicate that balanced radix sort is overall substan-
tially faster than sample sorting. When compared with random

310

sample sorting, balanced radix sort is faster by 30% to 60%. When
compared with regular sample sorting, balanced radix sorting is
consistently faster by 100%. The main reason balanced radix sort is
much faster than sample sorting is because balanced radix sort is
simple and straightforward in terms of (a) the idea, (b) the imple-
mentation, and (c) its environment requirement. The idea of
balanced radix sort is simple, requiring only four major steps: local
count, local move, all-to-all counter transpose, and communication.
Since the logic is simple, its implementation can also be made sim-
ple. The entire parallel algorithm has been implemented in
approximately 150 lines of C code, including parallel constructs.
This size does not include various key initialization and self check-
ing. The third reason is balanced radix sort does not use any special
programming environment, nor runtime systems like the Split-C
implementation [9]. The only environment needed is an MPI library
which is more or less becoming a standard environment for distrib-
uted-memory machines.

Sample sort, on the other hand, requires complex procedures.
Two comparative studies on parallel sorting indicated that sample
sort is the most complicated among several sorting algorithms in-
cluding radix sort, column sort, sample sort, and bitonic sort [3,6].
Sample sort reported in [9] consists of nine steps, including local
sort, sending/receiving keys, selecting splitters, sending/receiving
splitters, rearranging splitters, etc. We list below a typical sample
sort consisting of eight steps:

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

Each processor locally sorts n/P keys, separating the sorted
keys into P bins.
Each processor sends bin j of size O..nlP keys to processor j.
The size of each bin can range 0 to n/P keys, depending on
the key characteristics.
Each processor receives P-l sequences of keys and selects
s samples, These s samples are sent to processor 0.
Processor 0 collects from each processor a sequence of s
samples. These P sequences of samples are merged to form
a sequence of s*P samples. P values are selected from these
s*P samples, called splitters.
Processor 0 broadcasts the P splitters.
Each processor receives the P splitters. Each sorted subse-
quence received in Step (2) is then rearranged based on the
P splitters, resulting in yet another set of P subsequences.
Each processor, therefore, generates the total of P* subse-
quences, where a set of P subsequences corresponds to each
splitter.
Each processor sends to processor j a set of P subsequences
of keys that correspond to splitter j.

Each processor receives P2 subsequences of keys and merg-
es them to result in a sorted list.

As it is clear from the above description, sample sort requires
various local operations and global communications. Its communi-
cation steps include two all-to-all communication of keys, in
addition to the all-to-all communication of samples and broadcast-
ing of splitters.

To identify why balanced radix outperformed sample sort, we list
in Table 6 the procedures involved in the two sorting algorithms.
The table shows balanced radix sort for the radix of 8 bits for 32-bit
integers. Balanced radix sort is much simpler compared to sample
sort both in terms of computation and communication. Unlike sam-
ple sort, radix sort requires no step to be performed by a single
processor. Therefore, there is no potential bottleneck which can
hold all other processors. An all-to-all transpose operation of bin
count information involves a very small number of integers sent to
and received from all other processors. No complex procedures to
select samples and splitters are needed. The only computation re-

quired, except for local count and move, is to find a global map for
bin count. However, this procedure has approximately 20 lines of
C code since all-to-all bin count communication performs the nec-
essary computation for finding the map. This simplicity in
computation and communication has directly contributed to the
performance shown in Tables 4 and 5.

Balanced Radix Sort I Sample Sort

for (i=O; i<4; i++) (
local count and move
all-to-all transpose
(256 integers/prcr)
sendlrecv keys

local sort
sendlrecv keys
local sample selection

1 -to-all send/recv samples

(n/P* samples/processor)
splitter selection on a single

processor
broadcasting splitters
sendlrecv keys
local merge

Table 6: Major steps in balanced radix sorting and sample sorting.
Radix sort iterates 4 times for the radix of 8 bits for 32-bit integers.

6 Conclusions
Parallel radix sort is simple and straightforward. Its implementation
can be as simple as a few tens of lines of C code if implemented
properly. However, despite its simplicity in logic and implementa-
tion, parallel radix sort has suffered from the load balancing
problem. Due to the characteristics of keys, some processors often
receive a lot of keys while others do not. This load imbalance can
be a critical issue when a large number of keys are to be sorted on
a large number of processors. In this report, we have revisited the
traditional radix sort and have presented a new parallel radix sort,
called balanced radix sort that eliminates the load balancing prob-
lem. The main idea behind this new algorithm is to first obtain the
bin count of all the processors, and then compute which processors
get how many keys from what bin and what processors. Those
overloaded processors will spill keys to their neighbor processors.
Balanced radix sort guarantees exactly the same number of keys to
all processors.

To verify the idea, we have implemented balanced radix sort on
two distributed-memory multiprocessors: IBM SP2-Wide Node
and Cray T3E. There are four different versions for each machine:
sequential integer, parallel integer, sequential double, and parallel
double. SP2 versions include 32-bit integer and 64-bit doubles.
T3E versions include 64-bit integers and 64-bit doubles. The se-
quential versions are approximately 50 lines of C code while the
parallel ones are approximately 150 lines of C code, without includ-
ing array initialization and self-checking routines. All the parallel
versions are implemented in Message Passing Interface. Since MPI
does not require special programming environment, their code siz-
es are small. Due to its simplicity in implementation, we have been
able to sort up to 8M integers on a single processor. In total, we
have been able to sort 5 12M integers and 128M doubles on a 64-
processor SP-2.

Experimental results have indicated that balanced radix sort can
sort 5 12M integers in 20 seconds and 128M doubles in 15 seconds
on a 64-processor SP2-WN. We have also identified that various ar-
ray initialization methods do not give wide variations. For small
problems size and number of processors, there were some varia-
tions. However, for large data size and number of processors, the
variations due to different key initialization were essentially very

311

small. The scalability of balanced radix sort has reached 40-fold
speedup on a 64-processor SPZWN and 20-fold speedup on a 64-
processor T3E. The large difference between SP2 and T3E has been
due to inefficient programming environment. T3E is designed spe-
cifically for the SHMEM programming environment that uses one-
sided communication constructs such as put and get. However, the
MPI implementation hobbled the capability of T3E since MPI in-
curs more than 10 times the latency and overhead of SHMEM.
When translated to SHMEM on T3E, we believe the performance
will reach SP2 scalability.

Balanced radix sort has been compared with other sorting results
to identify the relative performance. Other methods include radix
sort, random sample sort, and regular sample sort. When compared
with other radix sorting algorithms on the same platform with the
same initialization, balanced radix sort has simply outperformed,
showing rwo tofive times faster. Sample sorting has been known to
outperform all similar parallel sorting methods. When compared
with sample sorting algorithms, balanced radix sorting is 30% to
100% faster. The load balancing problem present in radix sorting
seems to have been solved by the balanced radix sorting method
presented in this paper. Radix sort can now be the choice for parallel
sorting since it is simple, easy to code and maintain, requires a small
amount of memory, and yet performs faster than any other results
reported to date.

Our next step is to reduce the communication times that occupied
over 60% of sorting time for large data size. There are several ap-
proaches we plan to undertake. The first approach is to incorporate
message vectorization to reduce the excessive number of messages
and at the same time increase the message size. If those messages
that are from different buckets within each processor but destined
to the same processor can be grouped together, it will significantly
reduce the overhead associated with sending and receiving. The
second approach is to convert the two-sided MPI communication
constructs to one-sided MPI-2 constructs. This conversion will help
save processor synchronization since processors in principle need
not acknowledge each other for sending and receiving. However,
this improvement depends greatly on the low-level implementa-
tions of MPI-2 one-sided communication constructs.

Acknowledgments
Andrew Sohn is supported in part by NSF INT-9722545, NSF INT-
9722187, and the NASA JOVE Program NAG8 1114-2. Andrew
Sohn would like to thank Horst Simon of NERSC, Lawrence Ber-
keley National Laboratory for much help and encouragement in
computational science research. This research used resources of the
National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Energy Research of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098.
Andrew Sohn sincerely thanks Joseph Oliger of Research Institute
for Advanced Computer Science (RIACS) at NASA Ames for trav-
el support and Doug Sakal of MRJ Technology Solutions at NASA
Ames for summer support. The IBM SP-2s installed at the NASA
Ames and Langley Research Centers were used to perform part of
the experiments. Part of this work was performed while the author
was visiting NASA Ames in the summer of 1997. Special thanks go
to David Nassimi of NJIT for frequent discussions on parallel sort-
ing. The authors thank the EM-X multithreaded distributed-
memory multiprocessor group members, Mitsuhisa Sato, Hirofumi
Sakane, Hayato Yamana, and Yoshinori Yamaguchi, of the Parallel
Computer Architecture Laboratory of the Electrotechincal Labora-
tory of Japan for discussions on parallel sorting.

References
[l I A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman,

LogGP: Incorporating long messages into the LogP Model -

PI

[31

[41

[51

[61

L71

WI

[91

[lOI

[Ill

1121

[I31

[I41

[I51

One step closer towards a realistic model for parallel compu-
tation. In Proceedings of the 7th ACM Symposium on Paral-
lel Algorithms and Architectures, Santa Barbara, CA, July
1995, pp.95105.

K. Batcher, Sorting networks and their applications, in Pro-
ceedings of the AFIPS Spring Joint Computer Conference
32, Reston, VA, 1968, pp.307-3 14.

G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton,
S. J. Smith, and M. Zagha. A comparison of sorting algo-
rithms for the Connection Machine CM-2. In Proc. of ACM
Symposium on Parallel Algorithms and Architectures, Hil-
ton Head, South Carolina, July 1991, pp.3-16.

D. E. Culler, A. Dusseau, SC. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick, Parallel Program-
ming in Split-C, In Proceedings of Supercomputing ‘93, pag-
es 262-273, Portland, OR, November 1993.

D. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K. Schaus-
er, E. Santos, R. Subramonian, and T. von Eicken, LogP: To-
wards a Realistic Model of Parallel Computation, in Pro-
ceedings of the ACM Symposium on Principles and Practice
of Parallel Programming, San Diego, CA, May 1993.

A. C. Dusseau, D.E. Culler, K. Schauser, R. P. Martin, Fast
parallel sorting under LogP: Experience with the CM-5,
IEEE Transactions on Parallel and Distributed Systems 7,
August 1996, pp.79 I-805.

W. D. Frazer and A. C. McKellar. Samplesort: A sampling
approach to minimal storage tree sorting. Journal of the
ACM 17, 1970, pp.496-507.

A.V. Gerbessiotis and C.J. Siniolakis. Deterministic sorting
and randomized median finding on the BSP model. In Proc.

of the ACM Symposium on Parallel Algorithms and Archi-

tectures, Padua, Italy, June 1996, pp. 223-232.

D.R. Helman, D.A. Bader, and J. JBJB. Parallel algorithms
for personalized communication and sorting with an experi-
mental study. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, Padua, Italy, June
1996, pp.211-220.

X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong, and H.
Shi. On the versatility of parallel sorting by regular sam-
pling, Parallel Computing 19, 1993, pp.l079-1103.

NASA Metacenter Home Page, Parallel systems documen-
tation, http://parallel.nas.nasa.gov/Parallel/SP2/, NASA
Ames Research Center.

H. Shi and J. Schaeffer, Parallel sorting by regular sampling,
Journal of Parallel and Distributed Computing 14, 1992,
pp.361-372.

A. Sohn, J. Ku, Y. Kodama, M. Sato, H. Sakane, H. Yamana,
S. Sakai, and Y. Yamaguchi, Identifying the Capability of
Overlapping Computation with Communication, in Proc.
ACM/IEEE Conf on Parallel Architectures and Compila-
tion Techniques, Boston, MA, October 1996, pp. 133-138.

L. G. Valiant, A bridging model for parallel computation,
Communications of the ACM 33, August 1990, pp. 103-l 11.

T. Welcome, Introduction to the Cray T3E Programming En-
vironment, http://www.nersc.gov/training/T3E/intro9.html.

312

