
A Taxonomy of Parallel Sorting 

DINA BITTON 

Department of Applied Mathematics, We~zmann Institute, Rehovot, Israel 

DAVID J. DeWITT 

Computer Science Department, Unwerstty o[ Wisconsin, Madison, Wisconsin 53706 

DAVID K. HSIAO AND JAISHANKAR MENON 

Computer and Information Science Department, The Ohio State University, Columbus, Ohio 43210 

We propose a taxonomy of parallel sorting that encompasses a broad range of array- and 
file-sorting algorithms. We analyze how research on parallel sorting has evolved, from the 
earliest sorting networks to shared memory algorithms and VLSI sorters. 

In the context of sorting networks, we describe two fundamental parallel merging 
schemes: the odd-even and the bitonic merge. We discuss sorting algorithms that evolved 
from these merging schemes for parallel computers, whose processors communicate 
through interconnection networks such as the perfect shuffle, the mesh, and a number of 
other sparse networks. Following our discussion of network sorting algorithms, we 
describe how faster algorithms have been derived from parallel enumeration sorting 
schemes, where, with a shared memory model of parallel computation, keys are first 
ranked and then rearranged according to their rank. 

Parallel sorting algorithms are evaluated according to several criteria related to both 
the time complexity of an algorithm and its feasibility from the viewpoint of computer 
architecture. We show that, in addition to attractive communication schemes, network 
sorting algorithms have nonadaptive schedules that make them suitable for 
implementation. In particular, they are easily generalized to block sorting algorithms, 
which utilize limited parallelism to solve large sorting problems. We also address the 
problem of sorting large mass-storage files in parallel, using modified disk devices or 
intelligent bubble memory. We conclude by mentioning VLSI sorting as an active and 
promising direction for research on parallel sorting. 
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INTRODUCTION 

Sorting in computer terminology is defined 
as the process of rearranging a sequence of 
values in ascending or descending order. 
Computer programs such as compilers or 
editors often'choose to sort tables and lists 
of symbols stored in memory in order to 
enhance the speed and simplicity of algo- 
rithms used to access them (for the search 
or insertion of additional elements, for in- 
stance). Because of both their practical im- 
portance and theoretical interest, algo- 
rithms for sorting values stored in random 
access memory (internal sorting) have been 
the focus of extensive research on algo- 
rithms. First, serial sorting algorithms were 
investigated. Then, with the advent of par- 
allel processing, parallel sorting algorithms 
became a very active area of research. Many 

efficient serial algorithms are known which 
can sort n values in at most O(n log n) 
comparisons, the theoretic lower bound for 
this problem [Knuth 1973]. In addition to 
their time complexity, various other prop- 
erties of these serial internal sorting algo- 
rithms have also been investigated. In 
particular, sorting algorithms have been 
evaluated with respect to t ime-memory 
trade-offs (the amount of additional memory 
required to run the algorithm in addition 
to the memory storing the initial sequence), 
stability (the requirement that equal ele- 
ments retain their original relative order), 
and sensitivity to the initial distribution of 
the values (in particular, best case and 
worst case complexity have been investi- 
gated). 

In the last decade, parallel processing has 
added a new dimension to research on in- 
ternal sorting algorithms. Several models 
of parallel computation have been consid- 
ered, each with its own idea of "contiguous" 
memory locations and definition of the way 
multiple processors access memory. In or- 
der to state the problem of parallel sorting 
clearly, we must first define what is meant 
by a sorted sequence in a parallel processor. 
When processors share a common memory, 
the idea of contiguous memory locations in 
a parallel processor is identical to that in a 
serial processor. Thus, as in the serial case, 
the time complexity of a sorting algorithm 
can be expressed in terms of number of 
comparisons (performed in parallel by all 
or some of the processors) and internal 
memory moves. On the other hand, when 
processors do not share memory and com- 
municate along the lines of an interconnec- 
tion network, definition of the sorting prob- 
lem requires a convention to order the 
processors and thus the union of their 
local memory locations. When parallel pro- 
cessors are used, the time complexity of a 
sorting algorithm is expressed in terms of 
parallel comparisons and exchanges be- 
tween processors that are adjacent in the 
interconnecting network. 

Shared memory models of parallel com- 
putation have been instrumental in inves- 
tigating the intrinsic parallelism that exists 
in the sorting problem. Whereas the first 
results on parallel sorting were related to 
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sorting networks [Batcher 1968], faster 
parallel sorting algorithms have been pro- 
posed for theoretical models of parallel 
processors with shared memory [Hirsch- 
berg 1978; Preparata 1978]. A chain of re- 
sults in shared memory computation has 
led to a number of parallel sorting schemes 
that exhibit a O(log n) time complexity. 
Typically, the parallel sorting problem is 
expressed as that of sorting n numbers with 
n or more processors, all sharing a large 
common memory, so that they may access 
with various degrees of contention (e.g., 
parallel reads and parallel writes with ar- 
bitration). Research on paralle ! sorting has 
been largely concerned with purely theoret- 
ical issues, and it is only recently that fea- 
sibility issues such as limited parallelism 
or, in the context of very large scale inte- 
gration (VLSI) sorting, trade-offs between 
hardware complexity (expressed in terms 
of chip area) and time complexity are being 
addressed. 

In addition to using sorting algorithms 
to rearrange numbers in memory, sorting 
is often advocated in the context of infor- 
mation processing. In this context, sorting 
is used to order a file of data records, stored 
on a mass-storage device. The records are 
ordered with respect to the value of a key, 
which might be a single field or the con- 
catenation of several fields in the record. 
Files are sorted either to deliver well-orga- 
nized output to a user (e.g., a telephone 
directory), or as an intermediate step in the 
execution of a complex database operation 
[Bitton and DeWitt 1983; Selinger et al. 
1979]. Because of memory limitations file 
sorting cannot be performed in memory 
and external sorting algorithms must be 
used. External sorting schemes are usually 
based on iterative merging [Knuth 1973, 
sec. 5.4]. Even when fast disk devices are 
used as mass-storage devices, input/output 
accounts for most of the execution time in 
external sorting. 1 

Despite the obvious need for fast sorting 
of large files, the availability of parallel 
processing has not generated much interest 

1 It is est imated tha t  the  OS/VS Sor t /Merge program 
consumes as much as 25 percent  of  all input /output  
t ime on IBM systems [Bryant 1980]. 
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in research on new external sorting 
schemes. The reasons for the relatively 
small amount of research on parallel exter- 
nal sorting [Bitton-Friedland 1982; Even 
1974] are most likely related to the neces- 
sity of adapting such schemes to mass- 
storage device characteristics. 

It may seem that advances in computer 
technology, such as the advent of intelli- 
gent or associative memories, could elimi- 
nate or reduce the use of sorting as a tool 
for performing other operations. For ex- 
ample, when sorting is used in order to 
facilitate searching, one may advocate that 
associative memories will suppress the need 
of sorting. However, associative stores re- 
main too expensive for widespread use, es- 
pecially when large volumes of data are 
involved. In the case where sorting is re- 
quired for the sole purpose of ordering data, 
the only way to reduce sorting time is to 
develop fast parallel sorting schemes, pos- 
sibly by integrating sorting capability into 
mass-storage memory [Chen et al. 1978; 
Chung et al. 1980]. 

In this paper, we propose a taxonomy of 
parallel sorting that includes both internal 
and external parallel sorting algorithms. 
We analyze how research on parallel sort- 
ing has evolved from the earliest sorting 
networks to shared memory model algo- 
rithms and VLSI sorters. We attempt to 
classify a broad range of parallel sorting 
algorithms according to various criteria, in- 
cluding time efficiency and the architec- 
tural requirements upon which they de- 
pend. The goal of this study is to provide a 
basic understanding and a unified view of 
the body of research on parallel sorting. It 
would be beyond the scope of a single paper 
to survey the proposed models of compu- 
tation in detail or to analyze in depth the 
complexity of the various algorithms sur- 
veyed. We have kept to a minimum the 
discussion on algorithm complexity, and 
we only describe the main upper-bound re- 
sults for the number of parallel comparison 
steps required by the algorithms. Rather 
than theoretical problems related to paral- 
lel sorting (which have been treated in 
depth in a number of studies, e.g., Borodin 
and Hopcroft [ 1982], Shiloach and Vishkin 
[1981], and Valiant [1975]), we emphasize 
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problems related to the feasibility of par- 
allel sorting with present or near-term 
technology. 

The remainder of this paper is organized 
as follows. In Section 1, we show that cer- 
tain fast serial sorting algorithms can be 
parallelized, but that this approach leads to 
simple and relatively slow parallel algo- 
rithms. Section 2 is devoted to network 
sorting algorithms; in particular, we de- 
scribe in detail several sorting networks 
that perform Batcher's biton~c sort. In Sec- 
tion 3 we survey a chain of results that led 
to the development of very fast sorting 
algorithms: the shared memory model par- 
allel merging [Gavril 1975; Valiant 1975] 
and the shared memory sorting algorithms 
[Hirschberg 1978; Preparata 1978]. In Sec- 
tion 4 we address the issue of limited par- 
allelism and, in this context, we define 
"block sorting" parallel algorithms, which 
sort M.p elements with p processors. We 
then identify two methods for deriving a 
block sorting algorithm. In Section 5, we 
address the problem of sorting a large file 
in parallel. We show that previous results 
on parallel sorting are mostly applicable to 
internal sorting schemes, where the array 
to be sorted is entirely stored in memory, 
and propose external parallel sorting as a 
new research direction. Section 6 contains 
an overview of recently proposed designs 
for dedicated sorting devices. In Section 7 
we summarize this survey and indicate pos- 
sible directions for future research. 

1. PARALLELIZlNG SERIAL SORTING 
ALGORITHMS 

Parallel processing makes it possible to per- 
form more than a single comparison during 
each time unit. Some models of parallel 
computation (the sorting networks in par- 
ticular) assume that a key is compared to 
only one other key during a time unit, and 
that parallelism is exploited to compare 
different pairs of keys simultaneously. An- 
other possibility is to compare a key to 
many other keys simultaneously. For ex- 
ample, in Muller and Preparata [1975], a 
key is compared to (n - 1) other keys in a 
single time unit by using (n - 1) processors. 

Parallelism can also be exploited to move 
many keys simultaneously. After a parallel 

comparison, step, processors conditionally 
exchange data. The concurrency that can 
be achieved in the exchange steps is limited 
either by the interconnection scheme be- 
tween the processors (if one exists) or by 
memory conflicts (if shared memory is used 
for communication). 

With a parallel processor, the analog to 
a comparison and move step in a unipro- 
cessor memory is a parallel comparison- 
exchange of pairs of keys. Thus it is natural 
to measure the performance of parallel 
sorting algorithms in terms of the number 
of comparison-exchanges that they require. 
The speedup of a parallel sorting algorithm 
then can be defined as the ratio between 
the number of comparison-moves required 
by an optimal serial sorting algorithm and 
the number of comparison-exchanges re- 
quired by the parallel algorithm. 

Since a serial algorithm that sorts by 
comparison requires at least O(n log n) 
comparisons to sort n elements [Knuth 
1973, p. 183], the optimal speedup would be 
achieved when, by using n processors, n 
elements are sorted in O(log n) parallel 
comparisons. It does not, however, seem 
possible to achieve this bound by sim- 
ply parallelizing one of the well-known 
O(n log n)-time serial sorting algorithms. 
These algorithms appear to have serial con- 
straints that cannot be relaxed. Consider, 
for example, a two-way merge sort [Knuth 
1973, p. 160]. The algorithm consists of log 
n phases.During each phase, pairs of sorted 
sequences (produced in the previous phase) 
are merged into a longer sequence. During 
the first phases, a large number of proces- 
sors can be used to merge different pairs in 
parallel. However, there is no obvious way 
to introduce a high degree of parallelism in 
later phases. In particular, the last phase 
that consists of merging two sequences, 
each of which contains n/2 elements, is a 
serial process that may require as many as 
n - 1 comparisons. 

On the other hand, parallelization of 
straight sorting methods requiring O(n 2) 
comparisons seems easier. However, this 
approach can at best produce O(n)-time 
parallel sorting algorithms when O(n) pro- 
cessors are used, since by performing n 
comparisons instead of 1 in a single time 
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unit, the execution time can be reduced 
from O(n 2) to O(n). An example of this 
kind of parallelization is a well-known par- 
allel version of the common bubble sort 
called the odd-even transposition sort {Sec- 
tion 1.1). 

Partial parallelization of a fast serial al- 
gorithm can also lead to a parallel algo- 
rithm of order O(n). For example, the serial 
tree selection sort can be modified so that 
all comparisons at the same level of the 
tree are performed in parallel. The result is 
a parallel tree sort, described in Section 1.2. 
This parallel algorithm is used in the da- 
tabase Tree Machine [Bentley and Kung 
1979]. 

1.1 The Odd-Even Transposition Sort 

The serial "bubble sort" proceeds by com- 
paring and exchanging pairs of adjacent 
items. In order to sort an array (Xl, x 2 , . . . ,  
xn), (n - 1) comparison-exchanges (Xl, x2), 
(x2, x3), . . . ,  (xn-1, x~) are performed. This 
results in placing the maximum at the right 
end of the array. After this first step, x~ is 
discarded, and the same "bubble" sequence 
of comparison-exchanges is applied to the 
shorter array (Xl, x 2 , . . . ,  x~_~). By iterating 
(n - 1) times the entire sequence is sorted. 

The serial odd-even transposition sort 
[Knuth 1973] is a variation of the basic 
bubble sort, with a total of n phases, each 
of which requires n/2 comparisons. Odd 
and even phases alternate. During an odd 
phase, odd elements are compared with 
their right adjacent neighbor; thus the pairs 
(xl, x2), (xs, x4) . . . .  are compared. During 
an even phase, even elements are compared 
with their right adjacent neighbor; that is, 
the pairs (x2, x3), (x4, xs) . . . .  are compared. 
To completely sort the sequence, a total of 
n phases (alternately odd and even) is re- 
quired [Knuth 1973, p. 65]. 

This algorithm calls for a straightforward 
parallelization [Baudet and Stevenson 
1978]. Consider n linearly connected pro- 
cessors and label them P1, P2 . . . .  , P~. 
Assume that the links are bidirectional so 
that P, can communicate with both P~_~ 
and P,+I. Also assume that initially x, re- 
sides in P, for i = 1, 2 . . . . .  n. To sort (x~, 
x2 . . . . .  xn) in parallel, let P1, P3, P5 . . . .  be 
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active during the odd time steps, and exe- 
cute the odd phases of the serial odd-even 
transposition sort in parallel. Similarly, let 
P2, P4 . . . .  be active during the even time 
steps, and perform the even phases in par- 
allel. 

Note that a single comparison-exchange 
requires two transfers. For example, during 
the first step, x2 is transferred to/)1 and 
compared to xl by P1. Then, if Xl > x2, xl 
is transferred to P2; otherwise x2 is trans- 
ferred back to/)2.  Thus the parallel odd- 
even transposition algorithm sorts n num- 
bers with n processors in n comparisons 
and 2n transfers. 

1.2 A Parallel Tree-Sort Algorithm 

In a serial tree selection sort, a binary tree 
data structure with (2n - 1) nodes is used 
to sort n numbers. The tree has n leaves, 
and initially one number is stored in each 
leaf. Sorting is performed by selecting the 
minimum of the n numbers, then the min- 
imum of the remaining ( n  - 1) numbers, 
etc. 

The binary tree structure is used to find 
the minimum by iteratively comparing the 
numbers in two sibling nodes, and moving 
the smaller number to the parent node (see 
Figure 1). By simultaneously performing all 
the comparisons at the same level of the 
binary tree, a parallel tree sort is obtained 
[Bentley and Kung 1979]. 

Consider a set of (2n - 1) processors 
interconnected to form a binary tree with 
one processor at each of n leaf nodes and 
at each interior node of the tree. By starting 
with one number at each leaf processor, the 
minimum can be transferred to the root 
processor in log2(n) parallel comparison 
and transfer steps. At each step, a parent 
receives an element from each of its t w o  

children, performs a comparison, retains 
the smaller element, and returns the larger 
one. After the minimum has reached the 
root, it is written out. From then on, empty 
processors are instructed to accept data 
from nonempty children and select the 
minimum if they receive two elements. At 
every other step, the next elements in in- 
creasing order reaches the root. Thus sort- 
ing is completed in time O(n). 
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Figure 1. Parallel tree selection sort. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4. 

Both the odd-even transposition sort 
and the parallel tree sort constitute two 
simple parallel sorting algorithms, derived 
by performing in parallel the sequence of 
comparisons required at different stages of 
the bubble sort and the tree selection sort. 
Both algorithms use O(n) processors to sort 
an arbitrary sequence of n elements in O(n) 
comparisons. We shall show that parallel 
sorting algorithms developed by exploiting 
the intrinsic parallelism in sorting are 
faster than those developed by parallelizing 
serial sorting algorithms. 

2. NETWORK SORTING ALGORITHMS 

It is somehow surprising that initially the 
simple ,hardware problem of designing a 
multiple-input multiple-output switching 
network has been a prime motivation in 
developing parallel sorting algorithms. The 
earliest results in parallel sorting are found 
in the literature on sorting networks 
[Batcher 1968; Van Voorhis 1971]. Since 
then, a wide range of network topologies 
have been proposed, and their ability to 
support fast sorting algorithms has been 
extensively investigated. In Section 2.1, we 
describe in detail the odd-even and the 
bitonic merging networks. In Section 2.2, 
we show that parallel sorting algorithms for 
SIMD (single instruction multiple data 
stream) machines are derived from the bi- 
tonic network sort. In particular, we de- 
scribe two bitonic sort algorithms for a 
mesh-connected processor [Nassimi and 
Sahni 1979; Thompson and Kung 1977]. 

Several other networks are of major in- 
terest, particularly the cube [Pease 1977] 
and the cube-connected cycles [Preparata 
and Vuillemin 1979], which are suitable for 
sorting as well as for a number of numerical 
problems. It has been shown that sorting 
based on the bitonic merge can be imple- 
mented as a routing strategy on these net- 
works. It is beyond the scope of this paper 
to investigate these networks in detail; we 
shall concentrate on explaining the basic 
merge patterns that determine the routing 
strategies on all these networks and deriv- 
ing the O(log 2 n) lower bound for sorting 
time on Batcher's networks. 

2.1 Sorting Networks 

Sorting networks originated as fast and 
economical switching networks. Since a 
sorting network with n input lines can or- 
der any permutation of (1, 2 . . . .  , n), it can 
be used as a multiple-input multiple-output 
switching network [Batcher 1968]. Imple- 
menting a serial sorting algorithm on a 
network of comparators [Knuth 1973, p. 
220] results in a serialization of the com- 
parators and consequently increases the 
network delay. To make a sorting network 
fast, it is necessary to have number of com- 
parator modules perform comparisons in 
parallel. Parallel sorting algorithms are 
therefore necessary to design efficient sort- 
ing networks. 

One of the first results in parallel sorting 
is due to Batcher [1968], who presented two 
methods to sort n keys with O(n log 2 n) 
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Figure 2. 

' H • MAX (A,B) 

A comparison-exchange module. 

comparators  in t ime O(log 2 n). As shown in 
Figure 2, a comparator  is a module tha t  
receives two numbers  on its two input  lines 
A, B, and outputs  the minimum on its 
output  line L and the maximum on its 
output  line H. A serial compara tor  receives 
A and B with their  most  significant bit  first, 
and can be realized with a small number  of  
gates. Parallel  comparators  compare sev- 
eral bits in parallel at  each step; they are 
faster but  obviously more complex. Both  of 
Batcher 's  algorithms, the "odd-even sort" 
and the "bitonic sort," are based on the 
principle of i terated merging. A specific 
iterative rule is applied to an initial se- 
quence of  2 k numbers  in order to create 
sorted runs of length 2, 4, 8 . . . .  , 2  k during 
successive stages of the algorithm. 

2 1 1 The Odd-Even Merge Rule 

The  iterative rule for the odd-even merge 
is i l lustrated in Figure 3. Given two sorted 
sequences (al, a2, . . . ,  a,) and (bl, b2, . . . ,  
bn), two new sequences are created: The  
odd sequence consists of the odd-numbered 
terms and the even sequence consists of the 
even-numbered terms. The  odd sequence 
(Cl, c2 . . . .  ) is obtained by merging the odd 
terms (a,, a3 . . . .  ) with the odd terms (b,, 
b3 . . . .  ). Similarly, the even sequence (dl, 
d2 . . . .  ) is obtained by merging (a2, a4 . . . .  ) 
with (b2, b4 . . . .  ). Finally, the sequence (cl, 
c2 . . . .  ) and (dl, d2 . . . .  ) are merged into 
(e~, e2 . . . .  , e2,) by performing the following 
comparison-exchanges:  

el = el, 
ee, = min(c,+l, d,), 

e2,+l = max(c,+1, d,) for i = 1, 2, . . . ,  
e2n = d n .  

The  resulting sequence will be sorted (for a 
proof, see Knu th  [1973, pp. 224, 225]). To  
sort  2 k numbers  using the odd-even itera- 
tive merge rule requires 2 h-~ (1 by 1) merg- 
ing networks {i.e., compar ison-exchange 
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Figure 3. The lterative rule for the odd-even merge. 

modules), followed by 2 h-2 (2 by  2) merging 
networks, followed by 2 k-8 (4 by 4) merging 
networks, and so on. Since a 2 '+1 by 2 '+1 
merging network requires one more step of 
compar ison-exchange than  a 2' by 2' merg- 
ing network, it follows tha t  an input  num- 
ber goes through at  most  1 + 2 + 3 + • • • 
+ k = k(k + 1)/2 comparators.  This  means 
tha t  2 h numbers  are sorted by performing 
k(k + 1)/2 parallel comparison-exchanges.  
However,  the number  of comparators  re- 
quired by this type of  sorting network is 
(k 2 - k + 4)2 h-2 - 1 [Batcher  1968]. 

2.1.2 The Bitonic Merge Rule 

For the bitonic sort, a different  i terative 
rule is used (Figure 4). A bitonic sequence 
is obtained by concatenat ing two mono- 
tonic sequences, one ascending and the 
other  descending. A cyclic shift  of this con- 
catenated sequence is also a bitonic se- 
quence. The  bitonic i terative rule is based 
on the observation tha t  a bitonic sequence 
can be split into two bitonic sequences by 
performing a single step of  compar ison-  
exchanges. Let  (al, a 2 , . . . ,  a2~) be a bitonic 
sequence such tha t  al <-- a2 - • • • -< an and 
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Figure 4. The iterative rule for the bitonic merge. 

a n + l  >-- a n + 2  >-- " ' "  >-- a 2 n .  2 Then the se- 
quences 

min(al, an+i), min(a2, an+2) . . . .  

and 

max(a1, an+l), max(a2, an+2) . . . .  

are both bitonic. Furthermore, the first se- 
quence contains the n lower elements of 
the original sequence, whereas the second 
contains the n higher ones. It follows that 
a bitonic sequence can be sorted by sepa- 
rately sorting two bitonic sequences each 
half as long as the original sequence. 

To sort 2 k numbers by using the bitonic 
iterative rule, we can iteratively sort and 
merge sequences into larger sequences until 
a bitonic sequence of 24 is obtained. This 
bitonic sequence can be split into "lower" 
and "higher" bitonic subsequences. Note 
that the iterative building procedure of a 
bitonic sequence requires that some com- 
parators invert their output lines and out- 
put a pair of numbers in decreasing order 

2 As pointed out by one of the referees, the restriction 
to equal-length ascending and descending parts is not 
necessary. However, we have made this assumption 
for the sake of clarity in explaining the bltonic merge 
rule. 

(to produce the decreasing part of a bitonic 
sequence). Figure 5 illustrates a bitonic sort 
network for eight input lines. In general, 
the bitonic sort of 24 numbers requires 
k(k + 1)/2 steps, with each step using 2 k-1 
comparators. 

After the first bitonic sorter was pre- 
sented, it was shown that the same sorting 
scheme could be realized with only n/2 
comparators, interconnected as a perfect 
shuffle [Stone 1971]. Stone noticed that if 
the input values were labeled with a binary 
index, then the indices of every pair of keys 
entering a comparator at any step of the 
bitonic sort would differ by a single bit in 
their binary representations. Stone also 
made the following observations: The net- 
work has log n stages. The ith stage consists 
of i steps and at step i, inputs that differ in 
their least significant bit are compared. 
This regularity in the bitonic sorter sug- 
gests that a similar interconnection scheme 
could be used between the comparators of 
any two adjacent columns of the network. 

Stone concluded that the perfect shuffle 
interconnection could be used throughout 
all the stages of the network. "Shuffling" 
in input lines (in a manner similar to shuf- 
fling a deck of cards) is equivalent to shift- 
ing their binary representation to the left. 
Shuffling twice shifts the binary represen- 
tation of each index twice. Thus the input 
lines can be ordered before each step of 
comparison-exchanges by shuffling them 
as many times as required by the bitonic 
sort algorithm. The network that realizes 
this idea is shown in Figure 6 for eight 
input lines. In general, for n = 24 input 
lines, this type of bitonic sorter requires a 
total of (n/2)(log n) 2 comparators, arranged 
in (log n) 2 ranks of (n/2) comparators each. 
The network has log n stages, with each 
stage consisting of log n steps. At each step, 
the output lines are shuffled before they 
enter the next rank of comparators. The 
comparators in the first (log n) - i steps of 
the ith stage do not exchange their inputs; 
their only use is to shuffle their input lines. 

As an alternative to a multistage net- 
work, the bitonic sort can also be imple- 
mented as a recirculating network, which 
requires a much smaller number of com- 
parators. For example, an alternative bi- 
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FigureS. Batcher's bitonic sort for 
eight numbers. The boxes containing mi- 
nus signs indicate comparators that in- 
vert their output lines. 

Figure 6. Stone's modified 
bitonic sort. The boxes con- 
taining minus signs indicate 
comparators that revert their 
output lines. 
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tonic sorter can be built with a single rank 
of comparators connected by a set of shift 
registers and shuffle links, as shown in 
Figure 7. Since the ith stage of the bitonic 
sort algorithm requires i comparison-ex- 
changes, Batcher's sort requires 

1 + 2 + 3 + . . .  + l o g n  

= log n(log n + 1 ) / 2  

parallel comparison-exchanges. Stone's bi- 
tonic sorter, on the other hand, requires a 
total of (log n) 2 steps because additional 
steps are needed for shuffling the input 
lines (without performing a comparison). 
In both cases, the asymptotic complexity is 
O(log 2 n) comparison-exchanges. This pro- 
vides a speedup of O(n/log n) over the 
O(n log n) complexity of serial sorting. 

Therefore, this algorithm significantly im- 
proves the previous known bound of O(n) 
for the time required to sort n elements 
with n processing elements. 

Siegel has shown that the bitonic sort 
can be also performed by other types of 
networks in time O(log 2 n) [Siegel 1977]. 
The cube and the plus-minus 2' networks 
are among the networks that he considered. 
Essentially, the data exchanges required by 
the bitonic sort scheme can be realized on 
these networks as well (in fact, the perfect 
shuffle may be seen as an emulator of the 
cube). Siegel proves that simulating the 
shuffle on a large class of interconnection 
networks takes O(log 2 n) time, and thus 
sorting can also be performed within this 
time limit. Finally, we should also mention 
the versatile cube-connected cycle (CCC), a 
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Storoqe Comparators 
Registers 

Stone 's  architecture for the  bltonic sort. Figure 7. 

network that efficiently emulates the cube 
and the shuffle, and yet requires only three 
communication ports per processor [Pre- 
parata and Vuillemin 1979]. A bitonic or 
an odd-even sort can also be performed on 
the CCC in time 0(log 2 n). 

2.2 Sorting on an SIMD Machine 

Sorting networks are characterized by their 
property of nonadaptivity. They perform 
the same sequence of comparisons, regard- 
less of the results of intermediate compar- 
isons. In other words, whenever two keys 
R, and Rj are compared, the subsequent 
comparison for Rj is the same in the case 
where R, < R~ as it would have been in the 
case where R~ < R,. As a result of the 
nonadaptivity property, a network sorting 
algorithm is conveniently implemented on 
an SIMD machine. An SIMD {single in- 
struction stream, multiple data stream) 
machine is a system consisting of a control 
unit and a set of processors with local mem- 
ory interconnected by an interconnection 
network. The processors are highly syn- 
chronized. The control unit broadcasts in- 
structions that all active processors execute 
simultaneously (a mask specifies a subset 
of processors that are idle during an in- 
struction cycle). Since the sequence of com- 
parisons and transfers required in a net- 

work sorting algorithm is determined when 
the sorting operation is initialized, a central 
controller can supervise the execution of 
the algorithm by broadcasting at each time 
step the appropriate compare-exchange in- 
struction to the processors. 

2.2.1 Sorting on an Array Processor 

The sorting problem can be also defined as 
the problem of permuting numbers among 
the local memories associated with the 
processors of an SIMD machine. In partic- 
ular, by assuming that one number is stored 
in the local memory of each processor of a 
mesh-connected machine, sorting can be 
seen as the process of permuting the num- 
bers stored in neighboring processors until 
they conform to some ordering of the mesh. 

The processors of an n by n mesh-con- 
nected parallel processor can be indexed 
according to a specified rule, such as the 
row-major or column-major indexing, 
which are commonly accepted ways to order 
an array. Thompson and Kung [1977] 
adapted the bitonic sorting scheme to a 
mesh-connected processor, with three al- 
ternative indexing rules: the row-major 
rules, the snakelike row-major rules, and 
the shuffled row-major rules. These rules 
are shown in Figure 8. 

By assuming that n 2 keys with arbitrary 
values are initially distributed so that ex- 
actly one number resides in each processor, 
the sorting problem consists of moving the 
ith smallest number to the processor in- 
dexed by i, for i = 1 . . . . .  n 2. As with sorting 
networks, parallelism is used to compare 
pairs of numbers simultaneously, and a 
number is compared to only one other num- 
ber at any given unit of time. Concurrent 
data movement is allowed but only in the 
same direction; that is, all processors can 
simultaneously transfer the content of their 
transfer register to their right, left, above, 
or below neighbor. This computation model 
is SIMD since at each time unit a single 
instruction (compare or move) can be 
broadcast for concurrent execution by the 
set of processors specified in the instruc- 
tion. The complexity of a method that 
solves the sorting problem for this model 
can be measured in terms of the number of 
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Figure8. Array processor, indexing schemes. (a) 
Row-major indexing. (b) Snakelike row-major index- 
rag. (c) Shuffled row-major indexing. 

comparison and unit-distance routing steps. 
For the rest of this section we refer to the 
unit-distance routing step as a move. Any 
algorithm that is able to perform a permu- 
tation for this model will require at least 
4(n - 1) moves, since it may have to inter- 
change the elements from two opposite cor- 
ners of the array processor (this is true for 
any indexing scheme). In this sense a sort- 
ing algorithm that requires O(n) moves is 
optimal. 

The odd-even and the bitonic network 
sorting algorithms were adapted to this par- 
allel computation model, leading to two 
algorithms that perform the mesh sort in 
O(n) comparisons and moves [Thompson 
and Kung 1977]. The first algorithm uses 
an odd-even merge of two-dimensional ar- 
rays and orders the keys with snakelike 
row-major indexing. The second uses a bi- 
tonic sort and orders the keys with shuffled 
row-major indexing. A third algorithm that 
sorts in row-major order with similar per- 
formance was later obtained [Nassimi and 
Sahni 1979]. This algorithm is also an ad- 
aptation of the bitonic sort in which the 
iterative rule is a merge of two-dimensional 
arrays. Finally, an improved version of the 
two-dimensional odd-even merge was re- 
cently proposed [Kumar and Hirschberg 
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1983]. On the basis of this merge pattern, 
a two-dimensional array can be sorted in 
row-major order, in time O(n), and with a 
smaller proportionality constant than the 
previous algorithms. 

2.3 Summary 

In this section we have examined two well- 
known sorting networks, the odd-even and 
bitonic networks, and shown that the con- 
cept of a sorting network has been extended 
to various schemes of synchronous parallel 
sorting. Although some consideration was 
given to the hardware complexity, the com- 
plexity of sorting on these networks has 
mainly been characterized in terms of exe- 
cution time and number of processing ele- 
ments utilized. Thus, our baseline for eval- 
uating the various sorting schemes em- 
ployed by these networks was the number 
of comparison-exchanges required, and we 
did not systematically account for the de- 
gree of network interconnection as a com- 
plexity measure of the network sorting al- 
gorithms. It is beyond the scope of this 
study to provide a comprehensive analysis 
of interconnection networks. Extensive lit- 
erature exists on this topic, and we have 
listed some references for the interested 
reader [Feng 1981; Nassimi and Sahni 
1982; Pease 1977; Preparata and Vuillemin 
1979; Siegel 1977, 1979; Thompson 1980]. 

Until very recently, the best-known per- 
formance for sorting networks was an 
O(log 2 n) sorting time with O(n log 2 n) 
comparators. We have shown how the bi- 
tonic network sort can be interpreted as a 
sorting algorithm that sorts n numbers in 
time O(log 2 n) with n/2 processors. In Sec- 
tion 3, we show that, in an attempt to 
develop faster parallel sorting algorithm, a 
more flexible parallel computation model 
than the network comparators--the shared 
memory model--has been successfully in- 
vestigated. However, a recent theoretical 
result may renew the interest in r~etwork 
sorting algorithms [Ajtai et al. 1983], show- 
ing a network of O(n log n) comparators 
that can sort n numbers in O(log n) com- 
parisons. Unfortunately, unlike the odd- 
even or the bitonic sort, this algorithm is 
not suitable for implementation. It is based 
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on a complex graph construction that may 
make the proportionality constant (in the 
lower bound for the number of compari- 
sons) unacceptably high. 

3. SHARED MEMORY PARALLEL 
SORTING ALGORITHMS 

odd-even and the bitonic merge described 
in Section 2) and sorting algorithms that 
combine enumeration with parallel merge 
procedures [Preparata 1978]. In addition to 
these enumeration sorting algorithms, we 
also describe a parallel bucket sorting al- 
gorithm [Hirschberg 1978]. 

After the time bound of O(log 2 n) was 
achieved with the network sorting algo- 
rithms, researchers attempted to improve 
this to the theoretical lower bound of 
O(log n). In this section, we describe several 
parallel algorithms that sort n elements 
with O(log n) comparisons. These algo- 
rithms assume a shared memory model of 
parallel computation. 

Although the sorting network algorithms 
are based on comparison-exchanges of 
pairs, shared memory algorithms generally 
use enumeration to compute the rank of 
each element. Sorting is performed by 
computing in parallel the rank of each ele- 
ment, and routing the elements to the loca- 
tion specified by their rank. Thus, in the 
network sorting algorithms, individual 
processors decide locally about their next 
routing step by communicating with their 
nearest neighbors, whereas in the shared 
memory algorithms, any processor may ac- 
cess any location of the global memory at 
every step of the computation. As shown in 
Section 2, the network algorithms assume 
a sparse interconnection scheme and differ 
only by the network interconnection topol- 
ogy. The shared memory sorting algorithms 
rely on parallel computation models that 
differ in whether or not they allow read and 
write conflicts and how they resolve these 
conflicts [Borodin and Hopcroft 1982]. 
Clearly, the shared memory models are 
more powerful. However, at present, they 
are largely of theoretical interest, whereas 
the network models are suitable to imple- 
mention with current or near-term tech- 
nology. 

In the remainder of this section, we first 
describe a modified sorting network scheme 
that sorts by enumeration, using O(n 2) 
processing elements [Muller and Preparata 
1975]. We then survey two parallel merge 
algorithms that  are faster than the non- 
adaptive network merge algorithms (the 

3.1 A Modified Sorting Network 

In an attempt to reduce the number of 
comparisons required for sorting by in- 
creasing the degree of parallelism beyond 
O(n), Muller and Preparata [1975] first 
proposed a modified sorting network based 
on a different type of comparators (Figure 
9). These comparators have two input lines 
and one output line. The two numbers to 
compare are received on the A and B lines. 
The output bit x is 0 if A < B and 1 if A > 
B. To sort a sequence of n elements, each 
element is simultaneously compared to all 
the others in one unit of time by using a 
total of n(n  - 1) comparators. The output 
bits from the comparators are then fed into 
a parallel counter that computes in log n 
steps the rank of an element by counting 
the number of bits set to 1 as a result of 
comparing this element with all the other ' 
(n - 1). Finally, a switching network, con- 
sisting of a binary tree with (log n) + 1 
levels of single-pole double-throw switches, 
routes the element of rank i to the ith 
terminal of the tree. There is one such tree 
for each element, and each tree uses 
(2n - 1) switches. Routing an element 
through this tree requires log n time units, 
which determines the algorithm's complex- 
ity. At the cost of additional hardware com- 
plexity, this algorithm sorts n elements in 
O(log n) time with O(n 2) processing ele- 
ments. Muller and Preparata's algorithm 
was the first to use an enumeration scheme 
for parallel sorting. 

The idea of sorting by enumeration was 
exploited to develop other very fast parallel 
sorting algorithms [Hirschberg 1978; Pre- 
parata 1978], which improve Muller and 
Preparata's result by reducing the number 
of processing elements. Even from a theo- 
retical point of view, the requirement of n 2 
processors for achieving a speed of 
0 (log n) is not satisfactory. A parallel sort- 
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ing algorithm could theoretically achieve 
the same speed with only O(n) processors 
if it had a parallel speedup of order n. 

3.2 Faster  Para l le l  M e r g i n g  A lgor i thms 

Optimal parallel sorting algorithms may 
use fast merging procedures in addition to 
enumeration. In a study of parallelism in 
comparison problems, Valiant [1975] pre- 
sents a recursive algorithm that  merges two 
sorted sequences of n and m elements { n _< 
m) with mn processors in 2 log(log n) + 
O(1) comparison steps {compared to log n 
for the bitonic merge). On the other hand, 
Gavril [1975] proposes a fast merging al- 
gorithm that merges two sorted sequences 
of length n and m with a smaller number 
of processors p _< n _< m. This algorithm is 
based on binary insertion and requires only 
2 log(n + 1) + 4(n/p) comparisons when 
n = m .  

Both Valiant's and Gavril's merging al- 
gorithms assume a shared memory model 
of computation. All the processors utilized 
can access elements of the initial data si- 
multaneously, or intermediate computation 
results. 

3.3  B u c k e t  Sor t ing 

Hirschberg's [1978] "bucket sort" algo- 
rithm sorts n numbers with n processors in 
time O(log n), provided that  the numbers 
to be sorted are in the range {0, 1, . . . ,  
m - 1}. A side effect of this algorithm is 
that duplicate numbers that may appear in 
the initial sequence are eliminated in the 
sorting process. If memory conflicts could 
be ignored, there would be a straightfor- 
ward way to parallelize a bucket sort: It 
would be sufficient to have m buckets and 
to assign one number to each processor. 
The processor that  gets the ith number is 
labeled P,, and it is responsible for placing 
the value i in the appropriate bucket. For 
example, if P3 had the number 5, it would 
place the value 3 in bucket 5. The problem 
with this simplistic solution is that  a mem- 
ory conflict may result when several pro- 
cessors simultaneously attempt to store dif- 
ferent values of i in the same bucket. 

The memory contention problems can be 
solved by substantially increasing the 
memory requirements. Suppose that there 
is enough memory available for m arrays, 
each of size n. Each processor then can 
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write in a bucket without any fear of mem- 
ory conflict. To complete the bucket sort, 
the m arrays must be merged. The proces- 
sors perform this merge operation by 
searching, in a binary tree search method, 
for the marks of "buddy" active processors. 
If P~ and P~ discover each other's marks 
and i < j ,  then P, continues and P~ deacti- 
vates (hence dropping a duplicate value). 

Hirschberg also generalizes this algo- 
rithm so that  duplicate numbers remain in 
the sorted array, but this generalization 
degrades the performance of the sorting 
algorithm. The result is a method that sorts 
n numbers with nl~ 1/h processors in time 
0 ( k log n) (where k' is an arbitrary integer). 

In addition to the lack of feasibility of 
the shared memory model, another major 
drawback of the parallel bucket sort is its 
0 (mn) space requirement. Even when the 
range of values is not very large, it would 
be desirable to reduce the space require- 
ment; in the case of a wide range of values 
(e.g., when the sort keys are arbitrary char- 
acter strings rather than integer numbers), 
the algorithm cannot be utilized. 

3.4 Sorting by Enumeration 

Parallel enumeration sorting algorithms, 
which do not restrict the range of the sort 
values and yet run in time O(log n), are 
described by Preparata [1978]. The keys 
are partitioned into subsets, and a partial 
count is computed for each key in its re- 
spective subset. Then, for each key the sum 
of these partial counts is computed in par- 
allel, giving the rank of that key in the 
sorted sequence. Preparata's first algorithm 
uses Valiant's [1975] merging procedure, 
and sorts n numbers with n log n processors 
in time O(log n). The second algorithm 
uses Batcher's odd-even merge, and sorts 
n numbers with n 1+1/k processors in time 
O(k log n). The performance of the latter 
algorithm is similar to Hirschberg's {Sec- 
tion 2.3), but has the advantage of being 
free of memory contention. Recall that 
Hirschberg's model required simultaneous 
fetches from the shared memory, whereas 
Preparata's method does not (since each 
key participates in only one comparison at 
any given unit of time). 

3.5 Summary 

Despite the improvement achieved by elim- 
inating memory conflicts, the more recent 
shared memory algorithms are still far from 
being suitable for implementation. Any 
model requiring at least as many processors 
as the number of keys to be sorted, all 
sharing a very large common memory, is 
not feasible with present or near-term tech- 
nology. These models also ignore signifi- 
cant computation overheads such as, for 
instance, the time associated with the real- 
location of processors during various stages 
of the sort algorithm (although a first at- 
tempt at introducing this factor in a com- 
putation model is made by Vishkin 
[1981]). 

However, the results achieved are of ma- 
jor theoretical importance, and the meth- 
ods used demonstrate the intrinsic parallel 
nature of certain sorting procedures. It may 
also happen that future research will suc- 
ceed in refining the shared memory model 
for parallel computation and make it more 
reasonable from a computer architecture 
point of view. An attempt to classify the 
various types of assumptions underlying 
recent research o'n shared memory models 
of parallel computation is made by Borodin 
and Hopcroft [1982]. Of particular interest 
is the class of algorithms that allow simul- 
taneous reads, but allow simultaneous 
writes only if all processors try to write the 
same value [Shiloach and Vishkin 1981]. 

4. BLOCK SORTING ALGORITHMS 

For all the parallel sorting algorithms de- 
scribed in previous sections, the number of 
records or keys to be sorted is limited by 
the number of processors available. Typi- 
cally, O(n) or more processors are utilized 
to sort n records. Thus these algorithms 
implicitly assume that the number of pro- 
cessors is very large. 

This type of assumption was initially jus- 
tified when parallel sorting algorithms were 
developed for implementing fast switching 
networks. In this context, there are two 
reasons that  justify the n (or n/2) proces- 
sors requirement to sort n numbers. First, 
in a switching network, the processors are 
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simple hardware boxes that compare and 
exchange their two inputs. Second, since 
the number of processors is proportional to 
the number of input lines to the network, 
it can never be prohibitively high. 

However, for a general-purpose sorting 
algorithm, it is desirable to set a limit on 
the number of processors available so that 
the number of records than can be sorted 
will not be bounded by the number of pro- 
cessors. Furthermore, it must be possible 
to sort a large array with a relatively small 
number of processors. In general, research 
on parallel algorithms (for sorting, search- 
ing, and various numerical problems) is 
based on the assumption of unlimited par- 
allelism. It is only recently that technology 
constraints, on one hand, and a better un- 
derstanding of parallel algorithms, on the 
other, are motivating the development of 
algorithms for computers with a relatively 
small number of processors. An excellent 
illustration of this trend is a systematic 
study of quotient networks by Fishburn and 
Finkel [1982] for networks such as the per- 
fect shuffle and the hypercube. Quotient 
networks are architectures that exploit lim- 
ited parallelism in a very efficient way. The 
idea is that, given a network ofp  processing 
units, a problem of size n (for arbitrarily 
large n) can be solved by having each pro- 
cessing unit emulate a network of size 
0 (n/p) with the same topology. Together, 
the p processing units will emulate a net- 
work of size O (n). 

In the area of parallel sorting, the prob- 
lem of limited parallelism has not been 
systematically addressed until recently. We 
propose some basic ideas for further re- 
search in this direction in the following 
paragraphs. 

When p processors are available and n 
records are to be sorted, one possibility is 
to distribute the n records among the p pro- 
cessors so that a block o f M  = Fn/pl records 
is stored in each processor's local memory 
(a few dummy records may have to be added 
to constitute the last block). The processors 
are labeled P1, P2 . . . . .  Pp, according to an 
indexing rule that is usually dictated by the 
topology of the interconnecting network. 
Then, the processors cooperate to redistrib- 
ute the records so that 
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(1) the block residing in each processor's 
memory constitutes a sorted sequence 
S~ of length M, and 

(2) the concatenation of these local se- 
quences, $1, $2 . . . .  , Sp, constitutes a 
sorted sequence of length n. 

For example, for three processors, the dis- 
tribution of the sort keys before and after 
sorting could be the following: 

Before After 

Pl 2, 7, 3 1, 2, 3 
P2 4,9,1 4.5,6 
Ps 6,5,8 7,8,9 

Thus we now have a convention for order- 
ing the total address space of a multipro- 
cessor, and we have defined parallel sorting 
of an array of size n, where n may be much 
larger than p. 

Algorithms to sort large arrays of files 
that are initially distributed across the 
processors' local memories can be con- 
structed as a sequence of block merge-split 
steps. During a merge-split step, a proces- 
sor merges two sorted blocks of equal length 
{which were produced by a previous step), 
and splits the resulting block into a 
"higher" and a "lower" block, which are 
sent to two destination processors {like the 
high and low outputs in a comparison- 
exchange step). 

A block sorting algorithm is obtained by 
replacing every comparison-exchange step 
(in a sorting algorithm that conists of com- 
parison-exchange steps) by a merge-split 
step. It is easy to verify that  this procedure 
produces a sequence that is sorted accord- 
ing to the above definition. 

There are two ways to perform a merge- 
split step. One is based on a two-way merge 
[Baudet and Stevenson 1978]; the other is 
based on a bitonic merge [Hsaio and Menon 
1980]. In Sections 4.1 and 4.2, we describe 
both methods and illustrate them by inves- 
tigating the block sorting algorithms that 
they generate on the basis of the odd-even 
transposition sort (Section 1.1) and the 
bitonic sort (Section 2.1.2). An important 
property of the parallel block sorting algo- 
rithms generated by both methods is that, 
like the network sorting algorithms, they 
can be executed in SIMD mode (see Section 
2.2). 
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Figure 10. Merge-split based on 
two-way merge. 
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4.1 Two-Way Merge-Split 

A two-way merge-split step is defined as a 
two-way merge of two sorted blocks of size 
M, followed by splitting the result block of 
size 2M into two halves. Both operations 
are executed within a processor's local 
memory. The contents of processor's mem- 
ory before and after a two-way merge-split 
are shown in Figure 10. After two sorted 
sequences of length M have been stored in 
each processor's local memory, the proces- 
sors execute in parallel a merge procedure 
and fill up an output buffer 0 [1..2M] (thus 
a two-way merge-split step uses a local 
memory of size at least 4M). After all pro- 
cessors have completed the parallel execu- 
tion of the merge procedure, they split their 
output buffer and send each half to a des- 
tination processor. The destination pro- 
cessors' addresses are determined by the 
comparison-exchange algorithm on which 
the block sorting algorithm is based. 

4.1.1 Block Odd-Even Sort Based 
on Two-Way Merge-Split 

Initially, each of the p processors' local 
memory contains a sequence of length M. 
The algorithm consists of a preprocessing 
step (Step 0), during which each processor 
independently sorts the sequence residing 
in its local memory, and p additional steps 
(Steps 1 to p), during which the processors 
cooperate to merge the p sequences gener- 
ated by Step 0. During Step 0, the proces- 
sors perform a local sort by using any fast 
serial sorting algorithm. For example, a 
local two-way merge or a quick sort can be 
used. Steps 1 to p are similar to Steps 1 to 
p of the odd-even transposition sort (see 
Section 1.1). During the odd (even) steps, 
the odd- (even-) numbered processors re- 
ceive from their right neighbor a sorted 
block, perform a two-way merge, and send 

back the higher M records. The algorithm 
can be executed synchronously by p pro- 
cessors, odd and even processors being al- 
ternately idle. 

4.1.2 Block Bitonic Sort Based 
on Two-Way Merge-Split 

By using Batcher's bitonic, p records can 
be sorted with p/2 processors in log 2 p 
shuffle steps and 1/2((log p)  + 1)(log p)  
comparison-exchange steps. Suppose that  
each processor has a local memory large 
enough to store 4M records. In this case, a 
processor can perform a two-way merge 
split on two blocks of size M. By replacing 
each comparison-exchange step by a two- 
way merge-split step, we obtain a block 
bitonic sort algorithm that can sort M.p 
records with p/2 processors in log2p shuffle 
steps, and 1/2((log p) + 1)(log p)  merge- 
split steps. During a shuffle step, each pro- 
cessor sends to each of its neighbors a 
sorted sequence of length M. During a 
merge-split step, each processor performs 
a two-way merge of the two sequences of 
length M (which it has received during the 
previous shuffle step) and splits the result- 
ing sequence into two sequences of length 
M. The algorithm is illustrated in Figure 
11, for two processors, where M = 2. 

In the general case, the algorithm re- 
quires p/2 processors, where p is a power 
of 2, each with a local memory of size 
4(M.p) ,  to sort M.p records. 

4.1.3 Processor Synchronization 

When M is large, or when the individual 
records are long, transferring blocks of 
M.p records between the processors intro- 
duces time delays that are higher by several 
orders of magnitude than the instruction 
rate of the individual processors. In addi- 
tion, depending on the data distribution, 
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Step I Step 2 Step 3 

Figure 11. Block-bitonic sort based on two-way merge. 

the number of comparisons required to 
merge two blocks of M records may vary. 
Thus, for the execution of block sorting 
algorithms based on two-way merge-split, 
a coarser granularity for processor synchro- 
nization might be more adequate than the 
SIMD mode, where processors are synchro- 
nized at the machine instruction level. A 
multiprocessor model for those algorithms 
in which processors operate independently 
of each other, but can be synchronized by 
exchanging messages among themselves or 
with a controlling processor at intervals of 
several thousand instructions, is more ap- 
propriate for these algorithms. At the ini- 
tiation time of a block sorting algorithm, 
the controller assigns a number of proces- 
sors to its execution. Because other op- 
erations may already be executing, the 
controller maintains a free list and assigns 
processors from this list. In addition to the 
availability of processors, the size of the 
sorting problem is also considered by the 
controller to determine optimal processor 
allocation. 

4.2 Bitonic Merge-Exchange 

Consider the situation in which two pro- 
cessors P~ and P~ each contain a sorted 
block of length M, and we want to compare 
and exchange records between the proces- 
sors so that the lower M records reside in 
P~ and the higher M in Pj. One way to 
obtain this result is to execute the following 
three steps: 

(1) P~ sends its block to P~. 
(2) P, performs a two-way merge-split. 
(3) P, sends the high half-block to Pj. 

fi 

Figure 12. Bitonic merge-exchange step. 

However, as indicated in the previous sec- 
tion, the two-way merge-split requires a 
processor's local memory size to be at least 
4M. Another alternative is that  Pj send one 
of its records at a time and wait for a return 
record from P, before sending the next 
record. Suppose that M records (x~, x 2 , . . . ,  
XM) are stored in increasing order in P~'s 
memory and the M records (yl ,  Y2 , . . . ,  YM) 
are stored in decreasing order in P / s  mem- 
ory. Let Pj send yl to P~. Pi then compares 
xl and yl,  keeps the lower of the two, and 
sends back to Pj the higher record. This 
procedure is then repeated for (x2, y2), • • •, 
(XM, YM). This sequence of comparison- 
exchanges constitutes the "bitonic merge" 
and results in having the highest M records 
in Pj and the lowest M in P~ [Alekseyev 
1969; Knuth 1973]. Thus the merge-split 
operation can now be completed by having 
P, and Pj each perform a local sort of their 
M records. Figure 12 illustrates the bitonic 
merge-exchange operation for M = 5. It is 
important to notice that the data exchanges 
are synchronous (unlike in the two-way 
merge-split operation). Thus the block 
sorting algorithms based on the bitonic 
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merge-exchange are more suitable for im- 
plementation on parallel computers that 
require a high degree of synchronization 
between their processors. 

The bitonic merge-exchange also re- 
quires substantially less buffer space than 
the two-way merge-split. Because the two- 
way merge-split merges two blocks of size 
M within a processor's local memory, it 
uses (4.M) space. The bitonic merge-ex- 
change requires space for only M + 1 rec- 
ords. Finally, the comparisons (of pairs of 
records) and the transfers are interleaved 
in every bitonic merge-exchange step. The 
two-way merge-split requires that an entire 
block of data be transferred to a processor's 
memory before the merge operation is ini- 
tiated, whereas the bitonic merge-exchange 
can overlap each record's transfer time with 
processing time. 

However, a major disadvantage of the 
bitonic merge-exchange is the necessity for 
performing a local sort of M records in each 
processor after the exchange step is com- 
pleted. To perform the local sort, a serial 
sorting algorithm that permutes the records 
in place {such as heap sort) should be used. 
Otherwise the local sort might require more 
memory than the exchange. Note that the 
sequences generated by the bitonic ex- 
change are bitonic. Thus sorting these se- 
quences requires at most (M/2) log M com- 
parisons and local moves. 

4.2.1 Block Odd-Even Sort 
Based on Bitonic Merge-Exchange 

As with the block odd-even merge based 
on two-way merge (Section 4.1.1), we start 
with M records in each processor's memory 
and perform an initial phase where each 
processor independently sorts the sequence 
in its memory. However, Steps 1 . . .  p are 
different. During odd (even) steps, odd- 
(even-) numbered processors perform a bi- 
tonic merge-exchange with their right 
neighbor. Figure 13 illustrates this algo- 
rithm for p = 4, where M = 5. 

4.2.2 Block Bitonic Sort Based 
on Bitonic Merge-Exchange 

A fast and space-efficient block sorting al- 
gorithm can be derived from Stone's ver- 

sion of the bitonic sort, which was described 
in Section 2.1.2. Consider a network of p 
identical processors, where p is a power of 
2, interconnected by two types of links (Fig- 
ure 14): 

(1) two-way links, between pairs of adja- 
cent processors: POP1, P2P3 . . . .  ; 

(2) one-way shuffle links, connecting each 
P, to its shuffle processor. 

If each processor has a local memory of size 
M + 1, then M . p  records can be sorted by 
alternating local-sort, block-bitonic ex- 
changes between neighbor processors and 
shuffle procedures. During a shuffle proce- 
dure, each processor sends the records that  
were in its memory, in order, to the corre- 
sponding location of the shuffle processor's 
memory and receives the records that were 
in the memory of the reverse shuffle pro- 
cessor. Figure 15 illustrates this algorithm 
for p = 4, where M = 5. 

5. EXTERNAL PARALLEL SORTING 

In this section, we address the problem of 
sorting a large file in parallel. Serial file 
sorting algorithms are often referred to as 
"external sorting algorithms," as opposed 
to array sorting algorithms that are "inter- 
nal." For a conventional computer system 
the need for an external sorting algorithm 
arises when the file to be sorted is too large 
to fit in main memory. 

Thus for a single processor the distinc- 
tion between internal sorting and external 
sorting methods is well known, and there 
are accepted criteria for measuring their 
respective performances. However, the 
topic of external parallel sorting has not 
yet received adequate consideration. 

In Section 4, we presented a number of 
parallel algorithms that can sort an array 
that is initially distributed across the pro- 
cessors' memories. The size of the array 
was limited only by the total memory of the 
system (considered as the concatenation of 
the processors' local memories). By analogy 
to the definition of serial internal sorting, 
these algorithms may be called "parallel 
internal sorting algorithms." 

A parallel sorting algorithm is defined as 
a parallel external sorting algorithm if it can 
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Secondory Memory 
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Figure 14. Processors' rater- 
connection for block-bitomc 
sort. (a) p = 4. (b) p = 16. 

(b) 

sort a collection of elements that is too 
large to fit in the total memory available in 
the multiprocessor. This definition is gen- 
eral enough to apply to both categories of 
parallel architectures: the shared memory 
multiprocessors and the loosely coupled 
multiprocessors (also called "multicompu- 
ters"). 

For shared memory multiprocessors, an 
external sorting algorithm is required when 
the shared memory is not large enough to 
hold all the elements (and some work space 
to execute the sort program). On the other 
hand, for loosely coupled multiprocessors, 
the assumption is that the source records 
cannot be distributed across the processors' 
local memories. That  is, the multicomputer 

has p identical processors and each pro- 
cessor's memory is large enough to hold k 
records, but the source file has more than 
p.  k records. In both cases, the processor 
can access a mass-storage device on which 
the file resides. At termination of the al- 
gorithm, the file must be written back to 
the mass-storage device in sorted order. 3 

An early result on tape parallel sorting 
appeared in Even [1974]. Recently in Bit- 
ton [1982], several parallel sorting algo- 
rithms have been proposed for files residing 
on a modified moving-head disk. ~ 

3 Physmal order on the mass storage devine must be 
defined according to the physical characteristics of the 
storage device. For example, for a magnetic disk, a 
track-numbering convention must be agreed upon. 

Computing Surveys, Vol 16, No. 3, September 1984 



P0 
PI 
P2 
P3 

PO 
P1 
P2 
P 3 .  , 

PO 
PI 
P2 
P3 

A Taxonomy o[ Parallel Sorting 

8 2 {  l 3 $ 
8 12 ! 0 19 $ 

{ 
A Perfect Shuffle 

~1 ~= o zot s 

$ g 13 4 2 

PO 
P1 
P2 
P3 

PO 
PI 
P2 .,, 
P3 

Slap $ 

, l :  o 1 1 9  I s 
6 2 ~{ 3l s 
s o{,3l 4{ 

l 
A Perfe¢$ $hu~'le 

,~ ml , l 3{ s 
s ~21 OllOl 

{ 

3 { 3 1  ~. 
s l s l o  ~r 

i9 ~2 is J ~ ~ 
2 1  4 I S  { sJ  0 

S~e~ l 
2{  3 3 2 
6 I 8 8 g 
ig I 12 $ g 
21 4 I s  s 

A Pe~ee~ Shuffle 

l 
r...xcH.~,,c~. Co. ,1 

! 

(a) 

I 
17 
1.3 
0 

(b) 

PO 
P1 
P2 
P3 

PO 
P1 
P2 
P3 

PO - -  
PI ----- 
P2 - -  

P3 • t 

i 21 2 1 3 {  3 
19 13 I 12 { 9 I 8 
s s l  ~ { 2 l  o 
s 6{  8 1 0 1 1 7  

I 
A Perfect, Shuffle 

L 

~{ ~{ 21313 
s s t  4 z,I o 
I~ 13l ~ 2 l o t  s 
,~ ol s}olt7 

I 

~{2{ ~l 2l o 
s l s l  , I  3l 3 

slo I s I 61 s 
l ? { g ,  12 i~1 ~o 

PO o z {  2 ~ 
PZ 3 3 } 4 s $ 
P2 S t 8 8 8 g 
P3 . ~ " ~  9 t 12 13 17 lg 

(c) 

Figure 15. Block-bltonic sort. (a) Stage 1. (b) Stage 2. (c) Stage 3. 

• 3 0 7  

Computing Surveys, Vol. 16, No. 3, September 1984 



308 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon 

5.1 Parallel Tape Sorting 

The sorting problem addressed by Even 
[1974] is to sort a file of n records with p 
processors (where n is much larger than p)  
and 4p magnetic tapes. The only internal 
memory requirement is that three records 
could fit simultaneously in each processor's 
local memory. Under those assumptions, 
Even proposes two methods for paralleliz- 
ing the serial two-way external merge sort 
algorithm. In the first method, all the pro- 
cessors start together and work independ- 
ently of each other on separate partitions 
of the file. In the second, processors are 
added one at a time to perform sorting in a 
pipelinelike algorithm. Both methods can 
be described briefly: 

Method 1. Each processor is assigned 
nip records and four tapes and performs a 
(serial) external merge sort on this subset. 
After p sorted runs have been produced by 
this parallel phase, during a second phase 
a single processor merge sorts these runs 
serially. 

Method 2. The basic idea is that each 
processor performs a different phase of the 
serial merge procedure. The ith processor 
merges pairs of runs of size 2 ~-1 into runs 
of size 2 ~. Ideally, n is a power of 2 and log 
n processors are available. A high degree of 
parallelism is achieved by using the output 
tapes of a processor as input tapes for the 
next processor, so that, as soon as a pro- 
cessor has written two runs, these runs can 
be read and merged by another processor. 
In order to overlap the output time of a 
processor with the input time of its succes- 
sor, each processor writes alternately on 
four tapes (one output run on each tape). 

These methods show that, from the al- 
gorithmic point of view, it is possible to 
introduce a high degree of parallelism in 
the conventional two-way external merge- 
sort. However, the assumptions about the 
mass storage device do not consider con- 
straints imposed by technology. Like the 
shared memory model for array sorting, a 
parallel file sorting model that assumes a 
shared mass storage device with unlimited 
I/O bandwidth (e.g., a model with p pro- 

cessors and 4p magnetic tape drives) pro- 
vides very limited insight into practical as- 
pects of implementation. 

5.2 Parallel Disk Sorting 

The notion of a sorted file stored on a 
magnetic disk requires that physical order 
be defined since disks are not sequential 
storage media. Within a disk track records 
are stored sequentially, but then a conven- 
tion is needed for numbering tracks. For 
example, adjacent tracks could be defined 
as consecutive tracks on one disk surface. 
This convention is adequate if a separate 
processor is associated width each disk sur- 
face. Another way to model the mass-stor- 
age device is to consider a modified moving- 
head disk that provides for parallel read/ 
write of tracks on the same cylinder (Figure 
17). Disks that provide this capability have 
been proposed [Banerjee et al. 1978] and, 
in some cases, already built. The idea was 
pioneered by database machine designers, 
and prototypes have been built in the 
framework of database research projects 
(see, e.g., Leilich et al. [1978]). Commercial 
parallel readout disks have recently been 
made available for high-performance com- 
puters (e.g., a 600-Mbyte drive with a four- 
track parallel readout capability and a data 
transfer rate of 4.84 Mbytes/second is now 
available for the Cray-1 computer). Thus 
parallel readout disks appear to constitute 
a viable compromise between the cost-ef- 
fective, conventional moving-head disk and 
the obsolete fixed-head disk. 

In order to minimize seek time, two disk 
drives can be used concurrently. During 
execution of a single phase of a sorting 
algorithm, one drive can be utilized for 
reading and the other for writing. 

In Bitton-Friedland [1982] a number of 
parallel external sorting algorithms and ar- 
chitectures are examined and analyzed. 
The mass-storage device is modeled as a 
parallel read/write disk. The algorithm 
with the best performance is a parallel two- 
way external merge-sort, termed the par- 
allel binary merge algorithm. It is an im- 
proved variation of Method 1 in Section 
5.1, achieved by parallelizing the second 
phase of this method. 
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When the number of output runs is 2 k, 
and k > 1, 2 h-~ processors can be used to 
perform the next step of the merge sort 
concurrently. Thus execution of the paral- 
lel binary merge algorithm can be divided 
into three stages, as shown in Figure 16. 
The algorithm begins execution in a subop- 
timal stage {similar to Phase 1 in Method 
1), in which sorting is done by successively 
merging pairs of longer runs until the num- 
ber of runs is equal to twice the number of 
processors. During the suboptimal stage, 

the processors operate in parallel, but on 
separate data. Parallel I/O is made possible 
by associating each processor with a surface 
of the read disk and a surface of the write 
disk. 

When the number of runs equals 2.p, 
each processor will merge exactly two runs 
of length N/2p. We term this stage the 
optimal stage. During the postoptimal 
stage, parallelism is employed in two ways. 
First, 2 k-1 processors are utilized to concur- 
rently merge 2 k-1 pairs of runs {this occurs 
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Figure 17. Architecture for the par- 
allel binary merge sort. 

input 
drtve 

outpu 
drive 

after log(re~k) merge steps). Second, pipe- 
lining is used between merge steps. That is, 
the ith merge step starts as soon as Step 
(i - 1) has produced one unit of each of two 

ou tpu t  runs (where a unit can be a single 
record or an entire disk page). 

The ideal architecture for the execution 
of this algorithm is a binary tree of pro- 
cessors, as shown in Figure 17. The mass- 
storage device consists of two drives, and 
each leaf processor is associated with a 
surface on both drives. In addition to the 
leaf processors, the disk is also accessed by 
the root processor to write the output file. 
This organization permits leaf processors 
to do input/output in parallel, while reduc- 
ing almost by half the number of processors 
that must actually do input/output. 

5.3 Analysis of the Parallel External 
Sorting Algorithm 

For serial external sorting, numerous em- 
pirical studies have been done on real corn- 

puters and real data in order to evaluate 
the performance of external sorting algo- 
rithms. The results of these studies have 
complemented analytical results when 
modeling analytically the effect of access 
time and the impact of data distribution 
was too complex. In a parallel environment, 
the analytical performance evaluation of an 
external sorting scheme is made even more 
difficult by the complexity of the input/ 
output device. 

We can get some indication of the par- 
allel speedup that can be achieved by per- 
forming an external sort in parallel by as- 
suming that the available input/output 
bandwidth is limited only by the number of 
processors. However, a satisfactory analy- 
sis of parallel external sorting algorithms 
must also consider the constraints imposed 
by mass-storage technology. For example, 
if the modified disk described in Section 
5.2 is used for storage, the suboptimal stage 
for the parallel binary merge algorithm can 
either be highly parallel, or almost sequen- 
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tial, depending on whether or not the pro- 
cessors request data from several tracks on 
the same cylinder. 

6. HARDWARE SORTERS 

The high cost and frequent need of sorting 
are motivating the design of "sort engines," 
which could eventually off-load the sorting 
function from general-purpose central 
processing units (CPUs). By implementing 
the sequence of comparison and move steps 
required by an efficient sorting algorithm 
in hardware, one could realize a low-cost, 
fast, hardware device that would signifi- 
cantly lighten the burden on the CPU. Sev- 
eral alternative designs of hardware sorters 
recently have been proposed [Chen et al. 
1978; Chung et al. 1980; Dohi et al. 1982; 
Lee et al. 1981; Thompson 1983; Yasuura 
et al. 1982], and preliminary evaluations 
seem to indicate that a VLSI implementa- 
tion of sorting devices could soon become 
feasible. The relatively simple logic re- 
quired for sorting constitutes a strong ar- 
gument in favor of this approach. In addi- 
tion, the advent of new and inexpensive 
shift-register technologies, such as charge- 
coupled devices and bubble memories, is 
stimulating new designs of hardware sort- 
ers based on these technologies [Chung et 
al. 1980; Lee et al. 1981]. 

A future outcome of improvement in 
technology might be that bubble chips 
could provide storage for large files with 
on-chip sorting capabilities. In this case, 
the sorting function could be provided by 
the mass-storage devices without requiring 
the transfer of files to a dedicated sorting 
machine or the main memory of a general- 
purpose computer. However, it is prema- 
ture at this point to determine whether or 
not advances in technology will be able to 
provide for intelligent mass-storage devices 
with sorting capabilities. 

Hardware sorters, in particular VLSI 
sorting circuits, are at present the focus of 
active research. Theoretical problems re- 
lated to area-time complexity are also 
drawing considerable attention to VLSI 
sorting [Leiserson 1981; Thompson 1980, 
1983]. It is beyond the scope of this paper 
to present a proper survey of the theoretical 
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bounds obtained for chip area and time 
complexity of VLSI sorters. These results 
pertain to an area of research in complexity 
theory that is being defined, and they can- 
not be presented without properly defining 
VLSI circuit areas and introducing the the- 
oretical area • time 2 trade-off. 4 

In the remainder of this section, we pres- 
ent an overview of designs that have been 
proposed for hardware sorters. We have 
chosen to concentrate on sorters that were 
originally conceived for the magnetic bub- 
ble technology because they illustrate well 
how technology constraints define trade- 
offs between sort;ng speed and parameters 
related to input/output bandwidth, mem- 
ory, and number of control lines required 
by on-chip sorters. In particular, we shall 
describe the rebound sorter and the up- 
down sorter (which are clever pipeline ver- 
sions of the odd-even transposition sort 
(Section 1.1)) and a number of magnetic 
bubble sorters that integrate a sorting ca- 
pability in bubble memory. 

6.1 The Rebound Sorter 

The uniform ladder [Chen 1976] is an N- 
loop shift-register structure capable of stor- 
ing N records, one record to a loop. Since 
records stored in adjacent loops can be ex- 
changed, this storage structure is very suit- 
able for a hardware implementation of the 
odd-even transposition sort (see Section 
1.1). If the time for a bit to circulate within 
a loop is called a period, then N records 
(which have been previously stored in the 
ladder) can be sorted in iN + 1)/2 periods 
using i N -  1) comparators. 

Further investigation of the ladder struc- 
ture led to the design of a new sorting 
scheme, where input/output of the records 
can be completely overlapped with the sort- 
ing time. This scheme is the rebound sort 

4 In a recent work (pubhshed after this paper was 
written), Thompson has surveyed 13 different VLSI 
circuits that  implement a range of sorting schemes: 
heap sort, pipelined merge-sort, bitonic sort, bubble 
sort, and sort by enumeration. For each of these 
schemes one or several circuit topologms (linear array, 
mesh, binary tree, shuffle-exchange and cube-con- 
nected cycles, mesh of trees) are considered, and the 
resulting sorter is evaluated with respect to its area • 
time 2 complexity. 
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Figure 18. The rebound sorter. (a) The 
steering unit. (b) Stacking steering units. 
[From Chen et al. 1978. © IEEE 1978.] 
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[Chen et al. 1978]. The basic building block 
of the rebound sorter is the steering unit 
(Figure 18a), which has an upper-left cell 
L and a lower-right cell R. A sorter for N 
records is assembled by stacking (N - 1) 
steering units, plus a bottom cell and a top 
cell (Figure 18b). Associated with the two 
cells in a steering unit is a comparator K, 
which can compare the two values stored 
in the upper-left and lower-right cells. A 
record may be stored across adjacent cells 
in two steering units, but the sortin~ key 
(.assumed to be at the head of the record) 
must fit entirely in one cell, so that two 
keys can be compared in a single steering 
unit. Sorting is performed by pipelining 
input records through the stack of steering 
units. Records enter the sorter through the 
upper-left cell of the top steering unit and 
emerge in sorted order from the top cell (at 
the upper-right corner of the stack) after 
2N steps. The sorting scheme is illustrated 
in Figure 19 for N -  4. The sorter alternates 
between a decision state and a continuing 
state. In the decision state, each steering 
unit compares the keys stored in its upper- 
left and lower-right cells and emits the keys 
either horizontally (upper-left key to the 
right, lower-right key to the left) or verti- 
cally (upper-left key to the upper unit, 
lower-right key to the lower unit), depend- 
ing on the outcome of the comparison. In 

the continuing state, each steering unit 
continues to emit its contents in the direc- 
tion determined in the previous decision 
step. The continuing steps are required to 
append the body of the records to their key. 
It is readily seen that the first key emerges 
from the sorter after N steps (to + 8 in 
Figure 9) and the complete sorted sequence 
is produced in the next N steps. 

6.2 The Up-Down Sorter 

A significant improvement of the ladder 
sorter can be achieved by incorporating the 
comparison function in the basic steering 
unit and using an "up-down" sorting 
scheme instead of the rebound sort. To sort 
2N keys, the "compare~steer bubble sorter" 
[Lee et al. 1981] requires N compare/steer 
units stacked on top of each other. It is 
assumed that the entire record fits in a cell 
(thus two records are stored in a compare/ 
steer unit). The up-down sort is illustrated 
in Figure 20 for N = 3 (three compare/steer 
units sorting six records). The up-down 
sorter operates in two phases. During the 
downward input phase, 2N keys are loaded 
in 2N periods. During each period of the 
input phase, a key enters the sorter and all 
units push down the larger of their two 
keys (to the unit beneath them). During 
the upward output phase, each unit pops 

Computing Surveys, VoL 16, No. 3, September 1984 



A 
D 
B 
C z 
Cl 

A 
D 
B 
C2 
¢, 
c, 

10 to+ I 

A Taxonomy of Parallel Sorting 

I I 

A z- C>A I AA2 
! 

Bt~. ~,B 2 Bz.t>Bt 

ce. ,c2 
V J 
O~ .,,cz o~- ~>ol 

t o + 8  t o + 9  

Figure 19. 

A 
0 A A 
B~ D D 2 A A 2 
B~" B 2 D D 2 A I 
• ~, ¢, 
c2 B,, R' 

~l C 2 I~ " B2" I>B I 

:,c, c?- ;,c2 

to+2 to+5 to+4 to+5 to+6 

A A 
A 'A B B 

A Bi B C C 
I 

! i ! i I 
BA2 C~l C&2 O&l 0 2  

I I 
' C' D~I D2 Cz.>Cl . ~z 

' ! I ! 
O I '~  ~,O~, OZ- I>Dt! O2 

to+lO to+ll to÷12 to+IS to+14 

The rebound sort for four records. [From Chen et al. 19'/8. © IEEE 19'/8.] 

A 2 

At 

313 

C2~ >C j 

to+7 
A 
B 
C 
Ot 
I 

02 

to+15 

up the smaller of its two keys (to the unit 
above it), and a key is output in every 
period. 

The up-down sorter eliminates the large 
number of control lines required by the 
rebound sorter. Whereas the rebound sorter 
needs multiple control lines to individually 
activate switches of the bubble ladder, the 
up-down sorter can be implemented with a 
single control line for resetting all the com- 
pare/steer units at the beginning of each 
phase. Thus on-chip compare/steer units 
have a better chance to provide a chip 
implementation of large files sorters. 

Both the rebound sorter and the up- 
down sorter have the very desirable prop- 
erty of completely overlapping input/out- 
put time with sorting time. Thus, assuming 
that only serial input/output of data rec- 
ords is available, they provide an optimal 
hardware implementation of file sorting. 

6.3 Sorting within Bubble Memory 

The sorter described in the previous section 
incorporates the comparison function in 

the design of the bubble chip. Thus this 
type of chip constitutes an intelligent mem- 
ory capable of performing the logical oper- 
ations required by sorting. The sorters pro- 
posed by Chung et al. [1980] also attach 
comparators to the bubble memory, but in 
addition they eliminate the input/output 
function that is an intrinsic part of the 
previous sorting algorithms. The motiva- 
tion for designing bubble elements that sort 
in situ stems from the assumption that 
magnetic bubble memory may soon provide 
cost-effective mass-storage systems. If ad- 
vances in technology make this assumption 
realistic, then sorting a file will only require 
rearranging records in mass storage accord- 
ing to the result of comparisons performed 
within the memory, without input/output 
operations or CPU intervention. 

Four models of intelligent bubbles are 
considered by Chung et al. [1980], and for 
each model an alternative sorting scheme 
is proposed. The models differ in the size 
of the bubble loops and the number of 
switches required between the loops (to 
perform comparisons). The first two 
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shown). [From Lee et al. 1981 © IEEE 1981 ] 

models implement a bubble sort and an 
odd-even transposition sort, respectively, 
whereas the other two implement a bitonic 
sort. The first model has two loops, one of 
size (n - 1) and the other of size 1, and a 
single switch between them {Figure 21a) is 
used to perform the bubble sort. The second 
model is a linear array of loops, all of size 
1, with a switch between every pair of ad- 
jacent loops (Figure 21b). The (n - 1) 
switches perform comparisons in parallel, 
according to the odd-even transposition 
scheme (Section 1.1). For the other two 
models (Figure 21c, d), the basic idea is to 
have the option to open a switch between 
adjacent loops {that are of the same size in 
Model 3, but of different sizes in Model 4) 
so that the two loops are collapsed into a 

larger loop. At every step of the bitonic 
sort, larger loops are formed that contain 
bitonic sequences. Because they implement 
a faster algorithm, these sorters are faster 
than the first sorter. However, the trade- 
off is a higher complexity of hardware 
{more switches and more control states per 
switch), which may be beyond the present 
limits of chip density. For example, the 
bubble-sort sorter sorts in O(n 2) compari- 
son steps, but it requires only one simple 
switch (with three control states). On the 
other hand, a bitonic sorter sorts in time 
O(n log 2 n), but requires log n complex 
switches {each with 3 log n control states). 
Thus these detailed designs of bubble sort- 
ers provide an excellent illustration of cost- 
performance trade-offs in sorting. 
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6.4 Summary and Recent Results 

Several designs of hardware sorters have 
been proposed recently, and preliminary 
evaluations of their feasibility are being 
performed. One of the most promising ap- 
proaches appears to be the implementation 
of a simple pipelined sorting scheme on 
bubble chips. 

However, a number of alternative designs 
are being investigated. More recently, two 
detailed layouts of VLSI sorters have been 
proposed. A high-capacity cellular array 
that sorts by enumeration is investigated 
by Yasuura et al. [1982]. In Dohi et al. 
[1982], cells that are able to sort-merge 
data in compressed form are connected in 
a binary tree topology to constitute a pow- 
erful sorter. In both cases, the design of the 
basic cell is simple enough to allow very 
high density packaging with current or 
near-future technology. 

The parallel sorting algorithms used by 
currently proposed hardware sorters are 
simple and slow compared to either the 
sorting networks or the shared memory 
model algorithms. Although theoretical 
complexity bounds are being investigated 
for faster VLSI sorters and important re- 
sults have been achieved [Bilardi and Pre- 
parata 1983; Thompson 1983], the feasibil- 
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I I 

Figure21. Bubble loop structures 
for sorting. (a) Model 1. (b) Model 2. 
(c) Model 3. (d) Model 4. ]From 
Chung et al. 1980. © IEEE 1980.] 

2 k  

ity of fast high-capacity VLSI sorters is 
still an open question. However, this direc- 
tion of research on parallel sorting appears 
to be very promising. A well-defined VLSI 
complexity model that combines some 
measures of hardware complexity with time 
efficiency provides a systematic approach 
to the analysis of parallel sorting algo- 
rithms. For bubble memory devices, when 
assuming that records are read and written 
serially, it has been shown that input/out- 
put time can be effectively overlapped with 
sorting time. Thus advances in technology 
may soon make a well-designed, dedicated 
sorting device a cost-effective addition to 
many computer systems. 

7. CONCLUSIONS AND OPEN PROBLEMS 

Over the last decade, parallel sorting has 
been the focus of active research. There are 
many parallel sorting algorithms currently 
known, and new algorithms are being de- 
veloped-ranging from network sorting al- 
gorithms to algorithms for hypothetical 
shared memory parallel computers or VLSI 
chips. Research on parallel sorting has of- 
fered many challenges to both theoreticians 
and systems designers. From a theoretical 
point of view, the main research problem 
has been to design algorithms that, by sys- 
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tematically exploiting the intrinsic paral- 
lelism in sorting and merging, would reach 
the time theoretical lower bound, that is, 
algorithms that  would sort n numbers in 
time O(log n) on a hypothetical O(n)-pro- 
cessor parallel machine. From a practical 
point of view, systems designers have in- 
vestigated feasibilit:~ ~ with current or near- 
term technology, and integration of input/ 
output time in the cost of parallel sorting. 

Despite the apparent disparity among 
the numerous parallel sorting algorithms 
that have been proposed, we have shown 
how these algorithms may be broadly class- 
ified into three categories: network sorting 
algorithms, shared memory sorting algo- 
rithms, and parallel file sorting algorithms. 
The first category includes algorithms that 
are based on nonadaptive, iterative merging 
rules. Although first proposed in the con- 
text of sorting networks, the two funda- 
mental parallel merging algorithms (the 
odd-even merge and the bitonic merge de- 
scribed in Section 2.1) were subsequently 
embedded in a more general model of par- 
allel computation, where processors ex- 
change data synchronously along the lines 
of a sparse interconnection network. In 
particular, the bitonic sort has been 
adapted for mesh-connected processors 
{Section 2.2.1) and for a number of net- 
works such as the shuffle, the cube, and the 
cube-connected cycles. 

Algorithms in the second category re- 
quire a more flexible pattern of memory 
accesses than the network sorting algo- 
rithms. They assume shared memory 
models of computation, where processors 
share read and write access to a very large 
memory pool with various degrees of con- 
tention and different policies of conflict 
resolution. For the most part, shared mem- 
ory parallel sorting algorithms are faster 
than the network sorting algorithms, but 
they are far less feasible from a hardware 
point of view. In Table 1, we briefly sum- 
marize the asymptotic bounds of the main 
algorithms in both the network and the 
shared memory categories in terms of the 
number of processors utilized and execu- 
tion time (the latter being estimated as the 
number of parallel comparison steps re- 
quired by the algorithms). 

Table 1. Number of Processors and Execution Time 
Required by Parallel Sorting Algorithms 

Algorithm Processors Time 

Odd-even transposition n O( n ) 
Batcher's bitonic O(n log 2 n) O(log 2 n) 
Stone's bitonic n /2  O(log 2 n) 
Mesh-bitonic n O(~j'n) 
Muller-Preparata n 2 O(log n) 
Hirschberg (1) n O(log n) 
Hirschberg (2) n 1+1/k O(k  log n) 
Preparata (1) n log n O(log n) 
Preparata (2) n 1+Ilk O(k  log n) 
Ajtai et al n log n O(log n) 

In the third category of parallel sorting 
algorithms, we include both internal and 
external parallel sorting algorithms that 
utilize limited parallelism to solve a large- 
sized problem. First, we dealt with block 
sorting algorithms, which can sort a num- 
ber of elements proportional to the number 
of available processors (the proportionality 
constant being dependent on the size of the 
processors' memory). Then we introduced 
parallel external sorting algorithms, which 
address the problem of sorting in parallel 
an arbitrarily large mass-storage file. 

In addition to these three classes of par- 
allel sorting algorithms, we described (in 
Section 6) a number of hardware sorter 
designs. Hardware sorters that have been 
proposed assume a fixed, sparse intercon- 
nection scheme between the processing ele- 
ments. The parallel sorting algorithms uti- 
lized by these sorters are highly synchro- 
nous and, for the most part, are derived 
from algorithms that  we have classified as 
network sorting algorithms (in particular, 
the bitonic sort algorithm). Although the 
hardware sorters did not introduce inno- 
vative parallel sorting algorithms, new and 
important directions of research on parallel 
sorting are being explored in their design 
process. One such direction is the explora- 
tion of algorithms that exploit the charac- 
teristics of new storage technologies such 
as magnetic bubbles. Another is the inte- 
gration of VLSI hardware complexity in 
cost models by which parallel sorting algo- 
rithms are being evaluated. 

One conclusion emerges clearly from this 
survey. Most research in the area of parallel 
sorting has concentrated on finding new 
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ways to speed up the theoretical computa- 
tion time of sorting algorithms, whereas 
other aspects (such as technology con- 
straints or data dependency) have received 
less consideration. Typically, algorithms 
have been developed for hypothetical com- 
puters that utilize unlimited parallelism 
and space to solve the sorting problem in 
asymptotically minimal time. It seems that 
today the complexity of sorting is fairly 
understood, whether on networks or on 
shared memory parallel processors. Open 
questions that remain on the complexity of 
parallel sorting are mostly related to newer 
models of VLSI complexity that combine 
chip area with time [Thompson 1983]. 

It might be the case that after a decade 
of research devoted mainly to the theoret- 
ical complexity of parallel sorting, aspects 
related to the feasibility of parallel sorting 
in the context of current or near-term tech- 
nology will now be more systematically 
explored. To appreciate the practical im- 
portance of parallel sorting, one should 
remember that the first parallel sorting 
algorithms were intended to solve a hard- 
ware problem: building a switching network 
that could provide all permutations of n 
input lines, with a delay shorter than the 
time required by serial sorting. It would be 
interesting, now that many fast parallel 
sorting algorithms are known, to investi- 
gate whether these algorithms can be 
adapted to realistic models of parallel com- 
putation. In particular, further research is 
needed to address issues related to limited 
parallelism (to remove the constraint relat- 
ing the number of processors to the problem 
size), partial broadcast (to replace simul- 
taneous reads to the same memory loca- 
tion), and resolution of memory contention. 
Another important problem is related to 
the validity of the performance criteria by 
which parallel sorting algorithms have been 
previously evaluated. It is clear that com- 
munication, input/output costs, and hard- 
ware complexity must be integrated in a 
comprehensive cost model that is general 
enough to include a wide range of parallel 
processor architectures. In particular, the 
initial cost of reading the source data into 
the processors' memories has been largely 
ignored by previous research on parallel 
sorting. Although one is justified in ignor- 
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ing this issue when considering a serial, 
internal sorting algorithm, the situation is 
quite different with parallel processing. On 
a single processor the source data are read 
sequentially into memory. For a parallel 
processor there is the possibility that sev- 
eral processors can simultaneously read or 
write. On the ILLIAC-IV computer, for 
example, a fixed-head disk was used for 
concurrent input/output by all 64 proces- 
sors. However, when a significantly larger 
number of processors is involved, only part 
of them may be able to perform input/ 
output operations concurrently. Thus, for 
parallel internal sorting, the cost of reading 
and writing the data should be incorporated 
when an algorithm is evaluated. In partic- 
ular, there may be no point in using a 
parallel sorting algorithm that requires 
only O(log n) time, if the start-up cost to 
get the data in memory were O(n). Model- 
ing the cost of input/output is even more 
crucial when the problem of sorting a large 
data file in parallel is addressed. The im- 
portance of file sorting in database systems 
will undoubtedly motivate further research 
in this direction. 
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