
A Taxonomy of Parallel Sorting

DINA BITTON

Department of Applied Mathematics, We~zmann Institute, Rehovot, Israel

DAVID J. DeWITT

Computer Science Department, Unwerstty o[Wisconsin, Madison, Wisconsin 53706

DAVID K. HSIAO AND JAISHANKAR MENON

Computer and Information Science Department, The Ohio State University, Columbus, Ohio 43210

We propose a taxonomy of parallel sorting that encompasses a broad range of array- and
file-sorting algorithms. We analyze how research on parallel sorting has evolved, from the
earliest sorting networks to shared memory algorithms and VLSI sorters.

In the context of sorting networks, we describe two fundamental parallel merging
schemes: the odd-even and the bitonic merge. We discuss sorting algorithms that evolved
from these merging schemes for parallel computers, whose processors communicate
through interconnection networks such as the perfect shuffle, the mesh, and a number of
other sparse networks. Following our discussion of network sorting algorithms, we
describe how faster algorithms have been derived from parallel enumeration sorting
schemes, where, with a shared memory model of parallel computation, keys are first
ranked and then rearranged according to their rank.

Parallel sorting algorithms are evaluated according to several criteria related to both
the time complexity of an algorithm and its feasibility from the viewpoint of computer
architecture. We show that, in addition to attractive communication schemes, network
sorting algorithms have nonadaptive schedules that make them suitable for
implementation. In particular, they are easily generalized to block sorting algorithms,
which utilize limited parallelism to solve large sorting problems. We also address the
problem of sorting large mass-storage files in parallel, using modified disk devices or
intelligent bubble memory. We conclude by mentioning VLSI sorting as an active and
promising direction for research on parallel sorting.

Categories and Subject Descriptors: B.3 [Hardware] : Memory Structures; B.4
[Hardware] : Input/Output and Data Communications; B.7.1 [In tegra ted Circuits]:
Types and Design Styles; F.2.2 [Analysis of Algor i thms and P rob lem Complexity]:
Nonnumerical Algorithms and Problems

General Terms: Algorithms

Additional Key Words and Phrases: Block sorting, bubble memory, external sorting,
hardware sorters, internal sorting, limited parallelism, merging, parallel sorting, sorting
networks

D. Bitton's present address is Department of Computer Science, Cornell University, Ithaca, New York 14853.
Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1984 ACM 0360-0300/84/0900-0287 $00.75

Computing Surveys, Vol. 16, No. 3, September 1984

288

CONTENTS

• D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

INTRODUCTION
1 PARALLELIZING SERIAL SORTING

ALGORITHMS
1 1 The Odd-Even Transposition Sort
1 2 A Parallel Tree-Sort Algorithm

2 NETWORK SORTING ALGORITHMS
2 1 Sorting Networks
2 2 Sorting on an SIMD Machine
2.3 Summary

3. SHARED MEMORY PARALLEL
SORTING ALGORITHMS
3.1 A Modified Sorting Network
3 2 Faster Parallel Merging Algorithms
3 3 Bucket Sorting
3 4 Sorting by Enumeration
3 5 Summary

4 BLOCK SORTING ALGORITHMS
41 Two-Way Merge-Spht
4 2 Bltonic Merge-Exchange

5. EXTERNAL SORTING ALGORITHMS
5.1 Parallel Tape Sorting
5.2 Parallel Disk Sorting
5.3 Analysis of the Parallel External

Sorting Algorithm
6 HARDWARE SORTERS

61 The Rebound Sorter
6 2 The Up-Down Sorter
6 3 Sorting within Bubble Memory
6 4 Summary and Recent Results

7 CONCLUSIONS AND OPEN PROBLEMS
REFERENCES

A

v

INTRODUCTION

Sorting in computer terminology is defined
as the process of rearranging a sequence of
values in ascending or descending order.
Computer programs such as compilers or
editors often'choose to sort tables and lists
of symbols stored in memory in order to
enhance the speed and simplicity of algo-
rithms used to access them (for the search
or insertion of additional elements, for in-
stance). Because of both their practical im-
portance and theoretical interest, algo-
rithms for sorting values stored in random
access memory (internal sorting) have been
the focus of extensive research on algo-
rithms. First, serial sorting algorithms were
investigated. Then, with the advent of par-
allel processing, parallel sorting algorithms
became a very active area of research. Many

efficient serial algorithms are known which
can sort n values in at most O(n log n)
comparisons, the theoretic lower bound for
this problem [Knuth 1973]. In addition to
their time complexity, various other prop-
erties of these serial internal sorting algo-
rithms have also been investigated. In
particular, sorting algorithms have been
evaluated with respect to t ime-memory
trade-offs (the amount of additional memory
required to run the algorithm in addition
to the memory storing the initial sequence),
stability (the requirement that equal ele-
ments retain their original relative order),
and sensitivity to the initial distribution of
the values (in particular, best case and
worst case complexity have been investi-
gated).

In the last decade, parallel processing has
added a new dimension to research on in-
ternal sorting algorithms. Several models
of parallel computation have been consid-
ered, each with its own idea of "contiguous"
memory locations and definition of the way
multiple processors access memory. In or-
der to state the problem of parallel sorting
clearly, we must first define what is meant
by a sorted sequence in a parallel processor.
When processors share a common memory,
the idea of contiguous memory locations in
a parallel processor is identical to that in a
serial processor. Thus, as in the serial case,
the time complexity of a sorting algorithm
can be expressed in terms of number of
comparisons (performed in parallel by all
or some of the processors) and internal
memory moves. On the other hand, when
processors do not share memory and com-
municate along the lines of an interconnec-
tion network, definition of the sorting prob-
lem requires a convention to order the
processors and thus the union of their
local memory locations. When parallel pro-
cessors are used, the time complexity of a
sorting algorithm is expressed in terms of
parallel comparisons and exchanges be-
tween processors that are adjacent in the
interconnecting network.

Shared memory models of parallel com-
putation have been instrumental in inves-
tigating the intrinsic parallelism that exists
in the sorting problem. Whereas the first
results on parallel sorting were related to

Computing Surveys, Voi. 16, No. 3, September 1984

sorting networks [Batcher 1968], faster
parallel sorting algorithms have been pro-
posed for theoretical models of parallel
processors with shared memory [Hirsch-
berg 1978; Preparata 1978]. A chain of re-
sults in shared memory computation has
led to a number of parallel sorting schemes
that exhibit a O(log n) time complexity.
Typically, the parallel sorting problem is
expressed as that of sorting n numbers with
n or more processors, all sharing a large
common memory, so that they may access
with various degrees of contention (e.g.,
parallel reads and parallel writes with ar-
bitration). Research on paralle ! sorting has
been largely concerned with purely theoret-
ical issues, and it is only recently that fea-
sibility issues such as limited parallelism
or, in the context of very large scale inte-
gration (VLSI) sorting, trade-offs between
hardware complexity (expressed in terms
of chip area) and time complexity are being
addressed.

In addition to using sorting algorithms
to rearrange numbers in memory, sorting
is often advocated in the context of infor-
mation processing. In this context, sorting
is used to order a file of data records, stored
on a mass-storage device. The records are
ordered with respect to the value of a key,
which might be a single field or the con-
catenation of several fields in the record.
Files are sorted either to deliver well-orga-
nized output to a user (e.g., a telephone
directory), or as an intermediate step in the
execution of a complex database operation
[Bitton and DeWitt 1983; Selinger et al.
1979]. Because of memory limitations file
sorting cannot be performed in memory
and external sorting algorithms must be
used. External sorting schemes are usually
based on iterative merging [Knuth 1973,
sec. 5.4]. Even when fast disk devices are
used as mass-storage devices, input/output
accounts for most of the execution time in
external sorting. 1

Despite the obvious need for fast sorting
of large files, the availability of parallel
processing has not generated much interest

1 It is est imated tha t the OS/VS Sor t /Merge program
consumes as much as 25 percent of all input /output
t ime on IBM systems [Bryant 1980].

A Taxonomy o/Parallel Sorting • 289

in research on new external sorting
schemes. The reasons for the relatively
small amount of research on parallel exter-
nal sorting [Bitton-Friedland 1982; Even
1974] are most likely related to the neces-
sity of adapting such schemes to mass-
storage device characteristics.

It may seem that advances in computer
technology, such as the advent of intelli-
gent or associative memories, could elimi-
nate or reduce the use of sorting as a tool
for performing other operations. For ex-
ample, when sorting is used in order to
facilitate searching, one may advocate that
associative memories will suppress the need
of sorting. However, associative stores re-
main too expensive for widespread use, es-
pecially when large volumes of data are
involved. In the case where sorting is re-
quired for the sole purpose of ordering data,
the only way to reduce sorting time is to
develop fast parallel sorting schemes, pos-
sibly by integrating sorting capability into
mass-storage memory [Chen et al. 1978;
Chung et al. 1980].

In this paper, we propose a taxonomy of
parallel sorting that includes both internal
and external parallel sorting algorithms.
We analyze how research on parallel sort-
ing has evolved from the earliest sorting
networks to shared memory model algo-
rithms and VLSI sorters. We attempt to
classify a broad range of parallel sorting
algorithms according to various criteria, in-
cluding time efficiency and the architec-
tural requirements upon which they de-
pend. The goal of this study is to provide a
basic understanding and a unified view of
the body of research on parallel sorting. It
would be beyond the scope of a single paper
to survey the proposed models of compu-
tation in detail or to analyze in depth the
complexity of the various algorithms sur-
veyed. We have kept to a minimum the
discussion on algorithm complexity, and
we only describe the main upper-bound re-
sults for the number of parallel comparison
steps required by the algorithms. Rather
than theoretical problems related to paral-
lel sorting (which have been treated in
depth in a number of studies, e.g., Borodin
and Hopcroft [1982], Shiloach and Vishkin
[1981], and Valiant [1975]), we emphasize

Computing Surveys, VoL 16, No. 3, September 1984

290 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

problems related to the feasibility of par-
allel sorting with present or near-term
technology.

The remainder of this paper is organized
as follows. In Section 1, we show that cer-
tain fast serial sorting algorithms can be
parallelized, but that this approach leads to
simple and relatively slow parallel algo-
rithms. Section 2 is devoted to network
sorting algorithms; in particular, we de-
scribe in detail several sorting networks
that perform Batcher's biton~c sort. In Sec-
tion 3 we survey a chain of results that led
to the development of very fast sorting
algorithms: the shared memory model par-
allel merging [Gavril 1975; Valiant 1975]
and the shared memory sorting algorithms
[Hirschberg 1978; Preparata 1978]. In Sec-
tion 4 we address the issue of limited par-
allelism and, in this context, we define
"block sorting" parallel algorithms, which
sort M.p elements with p processors. We
then identify two methods for deriving a
block sorting algorithm. In Section 5, we
address the problem of sorting a large file
in parallel. We show that previous results
on parallel sorting are mostly applicable to
internal sorting schemes, where the array
to be sorted is entirely stored in memory,
and propose external parallel sorting as a
new research direction. Section 6 contains
an overview of recently proposed designs
for dedicated sorting devices. In Section 7
we summarize this survey and indicate pos-
sible directions for future research.

1. PARALLELIZlNG SERIAL SORTING
ALGORITHMS

Parallel processing makes it possible to per-
form more than a single comparison during
each time unit. Some models of parallel
computation (the sorting networks in par-
ticular) assume that a key is compared to
only one other key during a time unit, and
that parallelism is exploited to compare
different pairs of keys simultaneously. An-
other possibility is to compare a key to
many other keys simultaneously. For ex-
ample, in Muller and Preparata [1975], a
key is compared to (n - 1) other keys in a
single time unit by using (n - 1) processors.

Parallelism can also be exploited to move
many keys simultaneously. After a parallel

comparison, step, processors conditionally
exchange data. The concurrency that can
be achieved in the exchange steps is limited
either by the interconnection scheme be-
tween the processors (if one exists) or by
memory conflicts (if shared memory is used
for communication).

With a parallel processor, the analog to
a comparison and move step in a unipro-
cessor memory is a parallel comparison-
exchange of pairs of keys. Thus it is natural
to measure the performance of parallel
sorting algorithms in terms of the number
of comparison-exchanges that they require.
The speedup of a parallel sorting algorithm
then can be defined as the ratio between
the number of comparison-moves required
by an optimal serial sorting algorithm and
the number of comparison-exchanges re-
quired by the parallel algorithm.

Since a serial algorithm that sorts by
comparison requires at least O(n log n)
comparisons to sort n elements [Knuth
1973, p. 183], the optimal speedup would be
achieved when, by using n processors, n
elements are sorted in O(log n) parallel
comparisons. It does not, however, seem
possible to achieve this bound by sim-
ply parallelizing one of the well-known
O(n log n)-time serial sorting algorithms.
These algorithms appear to have serial con-
straints that cannot be relaxed. Consider,
for example, a two-way merge sort [Knuth
1973, p. 160]. The algorithm consists of log
n phases.During each phase, pairs of sorted
sequences (produced in the previous phase)
are merged into a longer sequence. During
the first phases, a large number of proces-
sors can be used to merge different pairs in
parallel. However, there is no obvious way
to introduce a high degree of parallelism in
later phases. In particular, the last phase
that consists of merging two sequences,
each of which contains n/2 elements, is a
serial process that may require as many as
n - 1 comparisons.

On the other hand, parallelization of
straight sorting methods requiring O(n 2)
comparisons seems easier. However, this
approach can at best produce O(n)-time
parallel sorting algorithms when O(n) pro-
cessors are used, since by performing n
comparisons instead of 1 in a single time

Computing Surveys, Vol. 16, No. 3, September 1984

unit, the execution time can be reduced
from O(n 2) to O(n). An example of this
kind of parallelization is a well-known par-
allel version of the common bubble sort
called the odd-even transposition sort {Sec-
tion 1.1).

Partial parallelization of a fast serial al-
gorithm can also lead to a parallel algo-
rithm of order O(n). For example, the serial
tree selection sort can be modified so that
all comparisons at the same level of the
tree are performed in parallel. The result is
a parallel tree sort, described in Section 1.2.
This parallel algorithm is used in the da-
tabase Tree Machine [Bentley and Kung
1979].

1.1 The Odd-Even Transposition Sort

The serial "bubble sort" proceeds by com-
paring and exchanging pairs of adjacent
items. In order to sort an array (Xl, x 2 , . . . ,
xn), (n - 1) comparison-exchanges (Xl, x2),
(x2, x3), . . . , (xn-1, x~) are performed. This
results in placing the maximum at the right
end of the array. After this first step, x~ is
discarded, and the same "bubble" sequence
of comparison-exchanges is applied to the
shorter array (Xl, x 2 , . . . , x~_~). By iterating
(n - 1) times the entire sequence is sorted.

The serial odd-even transposition sort
[Knuth 1973] is a variation of the basic
bubble sort, with a total of n phases, each
of which requires n/2 comparisons. Odd
and even phases alternate. During an odd
phase, odd elements are compared with
their right adjacent neighbor; thus the pairs
(xl, x2), (xs, x4) are compared. During
an even phase, even elements are compared
with their right adjacent neighbor; that is,
the pairs (x2, x3), (x4, xs) are compared.
To completely sort the sequence, a total of
n phases (alternately odd and even) is re-
quired [Knuth 1973, p. 65].

This algorithm calls for a straightforward
parallelization [Baudet and Stevenson
1978]. Consider n linearly connected pro-
cessors and label them P1, P2 , P~.
Assume that the links are bidirectional so
that P, can communicate with both P~_~
and P,+I. Also assume that initially x, re-
sides in P, for i = 1, 2 n. To sort (x~,
x2 xn) in parallel, let P1, P3, P5 be

A Taxonomy o/Parallel Sorting • 291

active during the odd time steps, and exe-
cute the odd phases of the serial odd-even
transposition sort in parallel. Similarly, let
P2, P4 be active during the even time
steps, and perform the even phases in par-
allel.

Note that a single comparison-exchange
requires two transfers. For example, during
the first step, x2 is transferred to/)1 and
compared to xl by P1. Then, if Xl > x2, xl
is transferred to P2; otherwise x2 is trans-
ferred back to/)2. Thus the parallel odd-
even transposition algorithm sorts n num-
bers with n processors in n comparisons
and 2n transfers.

1.2 A Parallel Tree-Sort Algorithm

In a serial tree selection sort, a binary tree
data structure with (2n - 1) nodes is used
to sort n numbers. The tree has n leaves,
and initially one number is stored in each
leaf. Sorting is performed by selecting the
minimum of the n numbers, then the min-
imum of the remaining (n - 1) numbers,
etc.

The binary tree structure is used to find
the minimum by iteratively comparing the
numbers in two sibling nodes, and moving
the smaller number to the parent node (see
Figure 1). By simultaneously performing all
the comparisons at the same level of the
binary tree, a parallel tree sort is obtained
[Bentley and Kung 1979].

Consider a set of (2n - 1) processors
interconnected to form a binary tree with
one processor at each of n leaf nodes and
at each interior node of the tree. By starting
with one number at each leaf processor, the
minimum can be transferred to the root
processor in log2(n) parallel comparison
and transfer steps. At each step, a parent
receives an element from each of its t w o

children, performs a comparison, retains
the smaller element, and returns the larger
one. After the minimum has reached the
root, it is written out. From then on, empty
processors are instructed to accept data
from nonempty children and select the
minimum if they receive two elements. At
every other step, the next elements in in-
creasing order reaches the root. Thus sort-
ing is completed in time O(n).

Computing Surveys, Vol. 16, No. 3, September 1984

292

1

x
2

D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

3 4 5 6 7 8 X 2 X 4 X 6

X X X 1 3 5

X X X X
X X

(a) (b)

X
7

X 2 X 4 X 6 X 8 X 2 X 4 X 6

X 3 X 7 X 3 X

1 5 X
X 1

(e) (d)

X

7

5

Figure 1. Parallel tree selection sort. (a) Step 1. (b) Step 2. (c) Step 3. (d) Step 4.

Both the odd-even transposition sort
and the parallel tree sort constitute two
simple parallel sorting algorithms, derived
by performing in parallel the sequence of
comparisons required at different stages of
the bubble sort and the tree selection sort.
Both algorithms use O(n) processors to sort
an arbitrary sequence of n elements in O(n)
comparisons. We shall show that parallel
sorting algorithms developed by exploiting
the intrinsic parallelism in sorting are
faster than those developed by parallelizing
serial sorting algorithms.

2. NETWORK SORTING ALGORITHMS

It is somehow surprising that initially the
simple ,hardware problem of designing a
multiple-input multiple-output switching
network has been a prime motivation in
developing parallel sorting algorithms. The
earliest results in parallel sorting are found
in the literature on sorting networks
[Batcher 1968; Van Voorhis 1971]. Since
then, a wide range of network topologies
have been proposed, and their ability to
support fast sorting algorithms has been
extensively investigated. In Section 2.1, we
describe in detail the odd-even and the
bitonic merging networks. In Section 2.2,
we show that parallel sorting algorithms for
SIMD (single instruction multiple data
stream) machines are derived from the bi-
tonic network sort. In particular, we de-
scribe two bitonic sort algorithms for a
mesh-connected processor [Nassimi and
Sahni 1979; Thompson and Kung 1977].

Several other networks are of major in-
terest, particularly the cube [Pease 1977]
and the cube-connected cycles [Preparata
and Vuillemin 1979], which are suitable for
sorting as well as for a number of numerical
problems. It has been shown that sorting
based on the bitonic merge can be imple-
mented as a routing strategy on these net-
works. It is beyond the scope of this paper
to investigate these networks in detail; we
shall concentrate on explaining the basic
merge patterns that determine the routing
strategies on all these networks and deriv-
ing the O(log 2 n) lower bound for sorting
time on Batcher's networks.

2.1 Sorting Networks

Sorting networks originated as fast and
economical switching networks. Since a
sorting network with n input lines can or-
der any permutation of (1, 2 , n), it can
be used as a multiple-input multiple-output
switching network [Batcher 1968]. Imple-
menting a serial sorting algorithm on a
network of comparators [Knuth 1973, p.
220] results in a serialization of the com-
parators and consequently increases the
network delay. To make a sorting network
fast, it is necessary to have number of com-
parator modules perform comparisons in
parallel. Parallel sorting algorithms are
therefore necessary to design efficient sort-
ing networks.

One of the first results in parallel sorting
is due to Batcher [1968], who presented two
methods to sort n keys with O(n log 2 n)

Computing Surveys, VoL 16, No. 3, September 1984

Figure 2.

' H • MAX (A,B)

A comparison-exchange module.

comparators in t ime O(log 2 n). As shown in
Figure 2, a comparator is a module tha t
receives two numbers on its two input lines
A, B, and outputs the minimum on its
output line L and the maximum on its
output line H. A serial compara tor receives
A and B with their most significant bit first,
and can be realized with a small number of
gates. Parallel comparators compare sev-
eral bits in parallel at each step; they are
faster but obviously more complex. Both of
Batcher 's algorithms, the "odd-even sort"
and the "bitonic sort," are based on the
principle of i terated merging. A specific
iterative rule is applied to an initial se-
quence of 2 k numbers in order to create
sorted runs of length 2, 4, 8 , 2 k during
successive stages of the algorithm.

2 1 1 The Odd-Even Merge Rule

The iterative rule for the odd-even merge
is i l lustrated in Figure 3. Given two sorted
sequences (al, a2, . . . , a,) and (bl, b2, . . . ,
bn), two new sequences are created: The
odd sequence consists of the odd-numbered
terms and the even sequence consists of the
even-numbered terms. The odd sequence
(Cl, c2) is obtained by merging the odd
terms (a,, a3) with the odd terms (b,,
b3). Similarly, the even sequence (dl,
d2) is obtained by merging (a2, a4)
with (b2, b4). Finally, the sequence (cl,
c2) and (dl, d2) are merged into
(e~, e2 , e2,) by performing the following
comparison-exchanges:

el = el,
ee, = min(c,+l, d,),

e2,+l = max(c,+1, d,) for i = 1, 2, . . . ,
e2n = d n .

The resulting sequence will be sorted (for a
proof, see Knu th [1973, pp. 224, 225]). To
sort 2 k numbers using the odd-even itera-
tive merge rule requires 2 h-~ (1 by 1) merg-
ing networks {i.e., compar ison-exchange

A Taxonomy of Parallel Sorting

° ' i O2 n

03 element
o d d - m e r g e

04 sorter

element
even - meroe

sor ter

293

Figure 3. The lterative rule for the odd-even merge.

modules), followed by 2 h-2 (2 by 2) merging
networks, followed by 2 k-8 (4 by 4) merging
networks, and so on. Since a 2 '+1 by 2 '+1
merging network requires one more step of
compar ison-exchange than a 2' by 2' merg-
ing network, it follows tha t an input num-
ber goes through at most 1 + 2 + 3 + • • •
+ k = k(k + 1)/2 comparators. This means
tha t 2 h numbers are sorted by performing
k(k + 1)/2 parallel comparison-exchanges.
However, the number of comparators re-
quired by this type of sorting network is
(k 2 - k + 4)2 h-2 - 1 [Batcher 1968].

2.1.2 The Bitonic Merge Rule

For the bitonic sort, a different i terative
rule is used (Figure 4). A bitonic sequence
is obtained by concatenat ing two mono-
tonic sequences, one ascending and the
other descending. A cyclic shift of this con-
catenated sequence is also a bitonic se-
quence. The bitonic i terative rule is based
on the observation tha t a bitonic sequence
can be split into two bitonic sequences by
performing a single step of compar ison-
exchanges. Let (al, a 2 , . . . , a2~) be a bitonic
sequence such tha t al <-- a2 - • • • -< an and

Computing Surveys. Vol. 16, No. 3, September 1984

294 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

o!

o

j . I =[

n
element
bitonic
sorter

fl
element
bitonic
sorter

el

e2
w

en-I

en

en÷l

en÷2

e2n-I

e2n-

Figure 4. The iterative rule for the bitonic merge.

a n + l >-- a n + 2 >-- " ' " >-- a 2 n . 2 Then the se-
quences

min(al, an+i), min(a2, an+2)

and

max(a1, an+l), max(a2, an+2)

are both bitonic. Furthermore, the first se-
quence contains the n lower elements of
the original sequence, whereas the second
contains the n higher ones. It follows that
a bitonic sequence can be sorted by sepa-
rately sorting two bitonic sequences each
half as long as the original sequence.

To sort 2 k numbers by using the bitonic
iterative rule, we can iteratively sort and
merge sequences into larger sequences until
a bitonic sequence of 24 is obtained. This
bitonic sequence can be split into "lower"
and "higher" bitonic subsequences. Note
that the iterative building procedure of a
bitonic sequence requires that some com-
parators invert their output lines and out-
put a pair of numbers in decreasing order

2 As pointed out by one of the referees, the restriction
to equal-length ascending and descending parts is not
necessary. However, we have made this assumption
for the sake of clarity in explaining the bltonic merge
rule.

(to produce the decreasing part of a bitonic
sequence). Figure 5 illustrates a bitonic sort
network for eight input lines. In general,
the bitonic sort of 24 numbers requires
k(k + 1)/2 steps, with each step using 2 k-1
comparators.

After the first bitonic sorter was pre-
sented, it was shown that the same sorting
scheme could be realized with only n/2
comparators, interconnected as a perfect
shuffle [Stone 1971]. Stone noticed that if
the input values were labeled with a binary
index, then the indices of every pair of keys
entering a comparator at any step of the
bitonic sort would differ by a single bit in
their binary representations. Stone also
made the following observations: The net-
work has log n stages. The ith stage consists
of i steps and at step i, inputs that differ in
their least significant bit are compared.
This regularity in the bitonic sorter sug-
gests that a similar interconnection scheme
could be used between the comparators of
any two adjacent columns of the network.

Stone concluded that the perfect shuffle
interconnection could be used throughout
all the stages of the network. "Shuffling"
in input lines (in a manner similar to shuf-
fling a deck of cards) is equivalent to shift-
ing their binary representation to the left.
Shuffling twice shifts the binary represen-
tation of each index twice. Thus the input
lines can be ordered before each step of
comparison-exchanges by shuffling them
as many times as required by the bitonic
sort algorithm. The network that realizes
this idea is shown in Figure 6 for eight
input lines. In general, for n = 24 input
lines, this type of bitonic sorter requires a
total of (n/2)(log n) 2 comparators, arranged
in (log n) 2 ranks of (n/2) comparators each.
The network has log n stages, with each
stage consisting of log n steps. At each step,
the output lines are shuffled before they
enter the next rank of comparators. The
comparators in the first (log n) - i steps of
the ith stage do not exchange their inputs;
their only use is to shuffle their input lines.

As an alternative to a multistage net-
work, the bitonic sort can also be imple-
mented as a recirculating network, which
requires a much smaller number of com-
parators. For example, an alternative bi-

Computing Surveys, Vol. 16, No. 3, September 1984

A Taxonomy o[Parallel Sorting • 295

__ 0 0 0 0 0

.

FigureS. Batcher's bitonic sort for
eight numbers. The boxes containing mi-
nus signs indicate comparators that in-
vert their output lines.

Figure 6. Stone's modified
bitonic sort. The boxes con-
taining minus signs indicate
comparators that revert their
output lines.

stoge I stoqe 2
A x

zo
z, \
Z2~

z,j

z./
Z7

stooe 3

Zo
-=Zl

_=Z z
• Z3

_--Z4
rZs

: Z6
:Z7

• - - - .~.~i . (. .y) , , - .~mo, , (. .y)
y--~--~mox(x,y) y ~ m i n (x , y)

tonic sorter can be built with a single rank
of comparators connected by a set of shift
registers and shuffle links, as shown in
Figure 7. Since the ith stage of the bitonic
sort algorithm requires i comparison-ex-
changes, Batcher's sort requires

1 + 2 + 3 + . . . + l o g n

= log n(log n + 1) / 2

parallel comparison-exchanges. Stone's bi-
tonic sorter, on the other hand, requires a
total of (log n) 2 steps because additional
steps are needed for shuffling the input
lines (without performing a comparison).
In both cases, the asymptotic complexity is
O(log 2 n) comparison-exchanges. This pro-
vides a speedup of O(n/log n) over the
O(n log n) complexity of serial sorting.

Therefore, this algorithm significantly im-
proves the previous known bound of O(n)
for the time required to sort n elements
with n processing elements.

Siegel has shown that the bitonic sort
can be also performed by other types of
networks in time O(log 2 n) [Siegel 1977].
The cube and the plus-minus 2' networks
are among the networks that he considered.
Essentially, the data exchanges required by
the bitonic sort scheme can be realized on
these networks as well (in fact, the perfect
shuffle may be seen as an emulator of the
cube). Siegel proves that simulating the
shuffle on a large class of interconnection
networks takes O(log 2 n) time, and thus
sorting can also be performed within this
time limit. Finally, we should also mention
the versatile cube-connected cycle (CCC), a

Computing Surveys, Vol. 16, No. 3, September 1984

296 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

Storoqe Comparators
Registers

Stone 's architecture for the bltonic sort. Figure 7.

network that efficiently emulates the cube
and the shuffle, and yet requires only three
communication ports per processor [Pre-
parata and Vuillemin 1979]. A bitonic or
an odd-even sort can also be performed on
the CCC in time 0(log 2 n).

2.2 Sorting on an SIMD Machine

Sorting networks are characterized by their
property of nonadaptivity. They perform
the same sequence of comparisons, regard-
less of the results of intermediate compar-
isons. In other words, whenever two keys
R, and Rj are compared, the subsequent
comparison for Rj is the same in the case
where R, < R~ as it would have been in the
case where R~ < R,. As a result of the
nonadaptivity property, a network sorting
algorithm is conveniently implemented on
an SIMD machine. An SIMD {single in-
struction stream, multiple data stream)
machine is a system consisting of a control
unit and a set of processors with local mem-
ory interconnected by an interconnection
network. The processors are highly syn-
chronized. The control unit broadcasts in-
structions that all active processors execute
simultaneously (a mask specifies a subset
of processors that are idle during an in-
struction cycle). Since the sequence of com-
parisons and transfers required in a net-

work sorting algorithm is determined when
the sorting operation is initialized, a central
controller can supervise the execution of
the algorithm by broadcasting at each time
step the appropriate compare-exchange in-
struction to the processors.

2.2.1 Sorting on an Array Processor

The sorting problem can be also defined as
the problem of permuting numbers among
the local memories associated with the
processors of an SIMD machine. In partic-
ular, by assuming that one number is stored
in the local memory of each processor of a
mesh-connected machine, sorting can be
seen as the process of permuting the num-
bers stored in neighboring processors until
they conform to some ordering of the mesh.

The processors of an n by n mesh-con-
nected parallel processor can be indexed
according to a specified rule, such as the
row-major or column-major indexing,
which are commonly accepted ways to order
an array. Thompson and Kung [1977]
adapted the bitonic sorting scheme to a
mesh-connected processor, with three al-
ternative indexing rules: the row-major
rules, the snakelike row-major rules, and
the shuffled row-major rules. These rules
are shown in Figure 8.

By assuming that n 2 keys with arbitrary
values are initially distributed so that ex-
actly one number resides in each processor,
the sorting problem consists of moving the
ith smallest number to the processor in-
dexed by i, for i = 1 n 2. As with sorting
networks, parallelism is used to compare
pairs of numbers simultaneously, and a
number is compared to only one other num-
ber at any given unit of time. Concurrent
data movement is allowed but only in the
same direction; that is, all processors can
simultaneously transfer the content of their
transfer register to their right, left, above,
or below neighbor. This computation model
is SIMD since at each time unit a single
instruction (compare or move) can be
broadcast for concurrent execution by the
set of processors specified in the instruc-
tion. The complexity of a method that
solves the sorting problem for this model
can be measured in terms of the number of

Computing Surveys, Vol 16, No 3, September 1984

(a) (b)

(c)

Figure8. Array processor, indexing schemes. (a)
Row-major indexing. (b) Snakelike row-major index-
rag. (c) Shuffled row-major indexing.

comparison and unit-distance routing steps.
For the rest of this section we refer to the
unit-distance routing step as a move. Any
algorithm that is able to perform a permu-
tation for this model will require at least
4(n - 1) moves, since it may have to inter-
change the elements from two opposite cor-
ners of the array processor (this is true for
any indexing scheme). In this sense a sort-
ing algorithm that requires O(n) moves is
optimal.

The odd-even and the bitonic network
sorting algorithms were adapted to this par-
allel computation model, leading to two
algorithms that perform the mesh sort in
O(n) comparisons and moves [Thompson
and Kung 1977]. The first algorithm uses
an odd-even merge of two-dimensional ar-
rays and orders the keys with snakelike
row-major indexing. The second uses a bi-
tonic sort and orders the keys with shuffled
row-major indexing. A third algorithm that
sorts in row-major order with similar per-
formance was later obtained [Nassimi and
Sahni 1979]. This algorithm is also an ad-
aptation of the bitonic sort in which the
iterative rule is a merge of two-dimensional
arrays. Finally, an improved version of the
two-dimensional odd-even merge was re-
cently proposed [Kumar and Hirschberg

A Taxonomy of Parallel Sorting • 297

1983]. On the basis of this merge pattern,
a two-dimensional array can be sorted in
row-major order, in time O(n), and with a
smaller proportionality constant than the
previous algorithms.

2.3 Summary

In this section we have examined two well-
known sorting networks, the odd-even and
bitonic networks, and shown that the con-
cept of a sorting network has been extended
to various schemes of synchronous parallel
sorting. Although some consideration was
given to the hardware complexity, the com-
plexity of sorting on these networks has
mainly been characterized in terms of exe-
cution time and number of processing ele-
ments utilized. Thus, our baseline for eval-
uating the various sorting schemes em-
ployed by these networks was the number
of comparison-exchanges required, and we
did not systematically account for the de-
gree of network interconnection as a com-
plexity measure of the network sorting al-
gorithms. It is beyond the scope of this
study to provide a comprehensive analysis
of interconnection networks. Extensive lit-
erature exists on this topic, and we have
listed some references for the interested
reader [Feng 1981; Nassimi and Sahni
1982; Pease 1977; Preparata and Vuillemin
1979; Siegel 1977, 1979; Thompson 1980].

Until very recently, the best-known per-
formance for sorting networks was an
O(log 2 n) sorting time with O(n log 2 n)
comparators. We have shown how the bi-
tonic network sort can be interpreted as a
sorting algorithm that sorts n numbers in
time O(log 2 n) with n/2 processors. In Sec-
tion 3, we show that, in an attempt to
develop faster parallel sorting algorithm, a
more flexible parallel computation model
than the network comparators--the shared
memory model--has been successfully in-
vestigated. However, a recent theoretical
result may renew the interest in r~etwork
sorting algorithms [Ajtai et al. 1983], show-
ing a network of O(n log n) comparators
that can sort n numbers in O(log n) com-
parisons. Unfortunately, unlike the odd-
even or the bitonic sort, this algorithm is
not suitable for implementation. It is based

Computing Surveys, Vol. 16, No. 3, September 1984

298 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

on a complex graph construction that may
make the proportionality constant (in the
lower bound for the number of compari-
sons) unacceptably high.

3. SHARED MEMORY PARALLEL
SORTING ALGORITHMS

odd-even and the bitonic merge described
in Section 2) and sorting algorithms that
combine enumeration with parallel merge
procedures [Preparata 1978]. In addition to
these enumeration sorting algorithms, we
also describe a parallel bucket sorting al-
gorithm [Hirschberg 1978].

After the time bound of O(log 2 n) was
achieved with the network sorting algo-
rithms, researchers attempted to improve
this to the theoretical lower bound of
O(log n). In this section, we describe several
parallel algorithms that sort n elements
with O(log n) comparisons. These algo-
rithms assume a shared memory model of
parallel computation.

Although the sorting network algorithms
are based on comparison-exchanges of
pairs, shared memory algorithms generally
use enumeration to compute the rank of
each element. Sorting is performed by
computing in parallel the rank of each ele-
ment, and routing the elements to the loca-
tion specified by their rank. Thus, in the
network sorting algorithms, individual
processors decide locally about their next
routing step by communicating with their
nearest neighbors, whereas in the shared
memory algorithms, any processor may ac-
cess any location of the global memory at
every step of the computation. As shown in
Section 2, the network algorithms assume
a sparse interconnection scheme and differ
only by the network interconnection topol-
ogy. The shared memory sorting algorithms
rely on parallel computation models that
differ in whether or not they allow read and
write conflicts and how they resolve these
conflicts [Borodin and Hopcroft 1982].
Clearly, the shared memory models are
more powerful. However, at present, they
are largely of theoretical interest, whereas
the network models are suitable to imple-
mention with current or near-term tech-
nology.

In the remainder of this section, we first
describe a modified sorting network scheme
that sorts by enumeration, using O(n 2)
processing elements [Muller and Preparata
1975]. We then survey two parallel merge
algorithms that are faster than the non-
adaptive network merge algorithms (the

3.1 A Modified Sorting Network

In an attempt to reduce the number of
comparisons required for sorting by in-
creasing the degree of parallelism beyond
O(n), Muller and Preparata [1975] first
proposed a modified sorting network based
on a different type of comparators (Figure
9). These comparators have two input lines
and one output line. The two numbers to
compare are received on the A and B lines.
The output bit x is 0 if A < B and 1 if A >
B. To sort a sequence of n elements, each
element is simultaneously compared to all
the others in one unit of time by using a
total of n(n - 1) comparators. The output
bits from the comparators are then fed into
a parallel counter that computes in log n
steps the rank of an element by counting
the number of bits set to 1 as a result of
comparing this element with all the other '
(n - 1). Finally, a switching network, con-
sisting of a binary tree with (log n) + 1
levels of single-pole double-throw switches,
routes the element of rank i to the ith
terminal of the tree. There is one such tree
for each element, and each tree uses
(2n - 1) switches. Routing an element
through this tree requires log n time units,
which determines the algorithm's complex-
ity. At the cost of additional hardware com-
plexity, this algorithm sorts n elements in
O(log n) time with O(n 2) processing ele-
ments. Muller and Preparata's algorithm
was the first to use an enumeration scheme
for parallel sorting.

The idea of sorting by enumeration was
exploited to develop other very fast parallel
sorting algorithms [Hirschberg 1978; Pre-
parata 1978], which improve Muller and
Preparata's result by reducing the number
of processing elements. Even from a theo-
retical point of view, the requirement of n 2
processors for achieving a speed of
0 (log n) is not satisfactory. A parallel sort-

Computing Surveys, Vol 16, No 3, September 1984

O! Cl#

' i I
el2 Por011el

02 = ~ : Counter
c o cI.n _ (t st.)
E

LmJ
¢ C[I

"1 :!
o L -~. . Porollel

o. _
E Cln (i t h l
o v
o

an Cnn

A Taxonomy of Parallel Sorting • 299

•{m--•d,m- I Id

IC
/ . 1 ° to

I o / : . , o I •

i%--.o I
I 1--

dio Figure9. Muller and Prepara-
ta's [1975] sorting network.

ing algorithm could theoretically achieve
the same speed with only O(n) processors
if it had a parallel speedup of order n.

3.2 Faster Para l le l M e r g i n g A lgor i thms

Optimal parallel sorting algorithms may
use fast merging procedures in addition to
enumeration. In a study of parallelism in
comparison problems, Valiant [1975] pre-
sents a recursive algorithm that merges two
sorted sequences of n and m elements { n _<
m) with mn processors in 2 log(log n) +
O(1) comparison steps {compared to log n
for the bitonic merge). On the other hand,
Gavril [1975] proposes a fast merging al-
gorithm that merges two sorted sequences
of length n and m with a smaller number
of processors p _< n _< m. This algorithm is
based on binary insertion and requires only
2 log(n + 1) + 4(n/p) comparisons when
n = m .

Both Valiant's and Gavril's merging al-
gorithms assume a shared memory model
of computation. All the processors utilized
can access elements of the initial data si-
multaneously, or intermediate computation
results.

3.3 B u c k e t Sor t ing

Hirschberg's [1978] "bucket sort" algo-
rithm sorts n numbers with n processors in
time O(log n), provided that the numbers
to be sorted are in the range {0, 1, . . . ,
m - 1}. A side effect of this algorithm is
that duplicate numbers that may appear in
the initial sequence are eliminated in the
sorting process. If memory conflicts could
be ignored, there would be a straightfor-
ward way to parallelize a bucket sort: It
would be sufficient to have m buckets and
to assign one number to each processor.
The processor that gets the ith number is
labeled P,, and it is responsible for placing
the value i in the appropriate bucket. For
example, if P3 had the number 5, it would
place the value 3 in bucket 5. The problem
with this simplistic solution is that a mem-
ory conflict may result when several pro-
cessors simultaneously attempt to store dif-
ferent values of i in the same bucket.

The memory contention problems can be
solved by substantially increasing the
memory requirements. Suppose that there
is enough memory available for m arrays,
each of size n. Each processor then can

Computing Surveys, Vol. 16, No 3, September 1984

300 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

write in a bucket without any fear of mem-
ory conflict. To complete the bucket sort,
the m arrays must be merged. The proces-
sors perform this merge operation by
searching, in a binary tree search method,
for the marks of "buddy" active processors.
If P~ and P~ discover each other's marks
and i < j , then P, continues and P~ deacti-
vates (hence dropping a duplicate value).

Hirschberg also generalizes this algo-
rithm so that duplicate numbers remain in
the sorted array, but this generalization
degrades the performance of the sorting
algorithm. The result is a method that sorts
n numbers with nl~ 1/h processors in time
0 (k log n) (where k' is an arbitrary integer).

In addition to the lack of feasibility of
the shared memory model, another major
drawback of the parallel bucket sort is its
0 (mn) space requirement. Even when the
range of values is not very large, it would
be desirable to reduce the space require-
ment; in the case of a wide range of values
(e.g., when the sort keys are arbitrary char-
acter strings rather than integer numbers),
the algorithm cannot be utilized.

3.4 Sorting by Enumeration

Parallel enumeration sorting algorithms,
which do not restrict the range of the sort
values and yet run in time O(log n), are
described by Preparata [1978]. The keys
are partitioned into subsets, and a partial
count is computed for each key in its re-
spective subset. Then, for each key the sum
of these partial counts is computed in par-
allel, giving the rank of that key in the
sorted sequence. Preparata's first algorithm
uses Valiant's [1975] merging procedure,
and sorts n numbers with n log n processors
in time O(log n). The second algorithm
uses Batcher's odd-even merge, and sorts
n numbers with n 1+1/k processors in time
O(k log n). The performance of the latter
algorithm is similar to Hirschberg's {Sec-
tion 2.3), but has the advantage of being
free of memory contention. Recall that
Hirschberg's model required simultaneous
fetches from the shared memory, whereas
Preparata's method does not (since each
key participates in only one comparison at
any given unit of time).

3.5 Summary

Despite the improvement achieved by elim-
inating memory conflicts, the more recent
shared memory algorithms are still far from
being suitable for implementation. Any
model requiring at least as many processors
as the number of keys to be sorted, all
sharing a very large common memory, is
not feasible with present or near-term tech-
nology. These models also ignore signifi-
cant computation overheads such as, for
instance, the time associated with the real-
location of processors during various stages
of the sort algorithm (although a first at-
tempt at introducing this factor in a com-
putation model is made by Vishkin
[1981]).

However, the results achieved are of ma-
jor theoretical importance, and the meth-
ods used demonstrate the intrinsic parallel
nature of certain sorting procedures. It may
also happen that future research will suc-
ceed in refining the shared memory model
for parallel computation and make it more
reasonable from a computer architecture
point of view. An attempt to classify the
various types of assumptions underlying
recent research o'n shared memory models
of parallel computation is made by Borodin
and Hopcroft [1982]. Of particular interest
is the class of algorithms that allow simul-
taneous reads, but allow simultaneous
writes only if all processors try to write the
same value [Shiloach and Vishkin 1981].

4. BLOCK SORTING ALGORITHMS

For all the parallel sorting algorithms de-
scribed in previous sections, the number of
records or keys to be sorted is limited by
the number of processors available. Typi-
cally, O(n) or more processors are utilized
to sort n records. Thus these algorithms
implicitly assume that the number of pro-
cessors is very large.

This type of assumption was initially jus-
tified when parallel sorting algorithms were
developed for implementing fast switching
networks. In this context, there are two
reasons that justify the n (or n/2) proces-
sors requirement to sort n numbers. First,
in a switching network, the processors are

Computing Surveys, Vol 16, No. 3, September 1984

simple hardware boxes that compare and
exchange their two inputs. Second, since
the number of processors is proportional to
the number of input lines to the network,
it can never be prohibitively high.

However, for a general-purpose sorting
algorithm, it is desirable to set a limit on
the number of processors available so that
the number of records than can be sorted
will not be bounded by the number of pro-
cessors. Furthermore, it must be possible
to sort a large array with a relatively small
number of processors. In general, research
on parallel algorithms (for sorting, search-
ing, and various numerical problems) is
based on the assumption of unlimited par-
allelism. It is only recently that technology
constraints, on one hand, and a better un-
derstanding of parallel algorithms, on the
other, are motivating the development of
algorithms for computers with a relatively
small number of processors. An excellent
illustration of this trend is a systematic
study of quotient networks by Fishburn and
Finkel [1982] for networks such as the per-
fect shuffle and the hypercube. Quotient
networks are architectures that exploit lim-
ited parallelism in a very efficient way. The
idea is that, given a network ofp processing
units, a problem of size n (for arbitrarily
large n) can be solved by having each pro-
cessing unit emulate a network of size
0 (n/p) with the same topology. Together,
the p processing units will emulate a net-
work of size O (n).

In the area of parallel sorting, the prob-
lem of limited parallelism has not been
systematically addressed until recently. We
propose some basic ideas for further re-
search in this direction in the following
paragraphs.

When p processors are available and n
records are to be sorted, one possibility is
to distribute the n records among the p pro-
cessors so that a block o f M = Fn/pl records
is stored in each processor's local memory
(a few dummy records may have to be added
to constitute the last block). The processors
are labeled P1, P2 Pp, according to an
indexing rule that is usually dictated by the
topology of the interconnecting network.
Then, the processors cooperate to redistrib-
ute the records so that

A Taxonomy of Parallel Sorting • 301

(1) the block residing in each processor's
memory constitutes a sorted sequence
S~ of length M, and

(2) the concatenation of these local se-
quences, $1, $2 , Sp, constitutes a
sorted sequence of length n.

For example, for three processors, the dis-
tribution of the sort keys before and after
sorting could be the following:

Before After

Pl 2, 7, 3 1, 2, 3
P2 4,9,1 4.5,6
Ps 6,5,8 7,8,9

Thus we now have a convention for order-
ing the total address space of a multipro-
cessor, and we have defined parallel sorting
of an array of size n, where n may be much
larger than p.

Algorithms to sort large arrays of files
that are initially distributed across the
processors' local memories can be con-
structed as a sequence of block merge-split
steps. During a merge-split step, a proces-
sor merges two sorted blocks of equal length
{which were produced by a previous step),
and splits the resulting block into a
"higher" and a "lower" block, which are
sent to two destination processors {like the
high and low outputs in a comparison-
exchange step).

A block sorting algorithm is obtained by
replacing every comparison-exchange step
(in a sorting algorithm that conists of com-
parison-exchange steps) by a merge-split
step. It is easy to verify that this procedure
produces a sequence that is sorted accord-
ing to the above definition.

There are two ways to perform a merge-
split step. One is based on a two-way merge
[Baudet and Stevenson 1978]; the other is
based on a bitonic merge [Hsaio and Menon
1980]. In Sections 4.1 and 4.2, we describe
both methods and illustrate them by inves-
tigating the block sorting algorithms that
they generate on the basis of the odd-even
transposition sort (Section 1.1) and the
bitonic sort (Section 2.1.2). An important
property of the parallel block sorting algo-
rithms generated by both methods is that,
like the network sorting algorithms, they
can be executed in SIMD mode (see Section
2.2).

Computing Surveys, Vol. 16, No. 3, September 1984

302 • D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon

Figure 10. Merge-split based on
two-way merge.

L,16181,, ,1 161 1
I 1 1 1,o 81,1,o1,,I

4.1 Two-Way Merge-Split

A two-way merge-split step is defined as a
two-way merge of two sorted blocks of size
M, followed by splitting the result block of
size 2M into two halves. Both operations
are executed within a processor's local
memory. The contents of processor's mem-
ory before and after a two-way merge-split
are shown in Figure 10. After two sorted
sequences of length M have been stored in
each processor's local memory, the proces-
sors execute in parallel a merge procedure
and fill up an output buffer 0 [1..2M] (thus
a two-way merge-split step uses a local
memory of size at least 4M). After all pro-
cessors have completed the parallel execu-
tion of the merge procedure, they split their
output buffer and send each half to a des-
tination processor. The destination pro-
cessors' addresses are determined by the
comparison-exchange algorithm on which
the block sorting algorithm is based.

4.1.1 Block Odd-Even Sort Based
on Two-Way Merge-Split

Initially, each of the p processors' local
memory contains a sequence of length M.
The algorithm consists of a preprocessing
step (Step 0), during which each processor
independently sorts the sequence residing
in its local memory, and p additional steps
(Steps 1 to p), during which the processors
cooperate to merge the p sequences gener-
ated by Step 0. During Step 0, the proces-
sors perform a local sort by using any fast
serial sorting algorithm. For example, a
local two-way merge or a quick sort can be
used. Steps 1 to p are similar to Steps 1 to
p of the odd-even transposition sort (see
Section 1.1). During the odd (even) steps,
the odd- (even-) numbered processors re-
ceive from their right neighbor a sorted
block, perform a two-way merge, and send

back the higher M records. The algorithm
can be executed synchronously by p pro-
cessors, odd and even processors being al-
ternately idle.

4.1.2 Block Bitonic Sort Based
on Two-Way Merge-Split

By using Batcher's bitonic, p records can
be sorted with p/2 processors in log 2 p
shuffle steps and 1/2((log p) + 1)(log p)
comparison-exchange steps. Suppose that
each processor has a local memory large
enough to store 4M records. In this case, a
processor can perform a two-way merge
split on two blocks of size M. By replacing
each comparison-exchange step by a two-
way merge-split step, we obtain a block
bitonic sort algorithm that can sort M.p
records with p/2 processors in log2p shuffle
steps, and 1/2((log p) + 1)(log p) merge-
split steps. During a shuffle step, each pro-
cessor sends to each of its neighbors a
sorted sequence of length M. During a
merge-split step, each processor performs
a two-way merge of the two sequences of
length M (which it has received during the
previous shuffle step) and splits the result-
ing sequence into two sequences of length
M. The algorithm is illustrated in Figure
11, for two processors, where M = 2.

In the general case, the algorithm re-
quires p/2 processors, where p is a power
of 2, each with a local memory of size
4(M.p) , to sort M.p records.

4.1.3 Processor Synchronization

When M is large, or when the individual
records are long, transferring blocks of
M.p records between the processors intro-
duces time delays that are higher by several
orders of magnitude than the instruction
rate of the individual processors. In addi-
tion, depending on the data distribution,

Computing Surveys, Vol. 16, No. 3, September 1984

A Taxonomy of Parallel Sorting 303

Step I Step 2 Step 3

Figure 11. Block-bitonic sort based on two-way merge.

the number of comparisons required to
merge two blocks of M records may vary.
Thus, for the execution of block sorting
algorithms based on two-way merge-split,
a coarser granularity for processor synchro-
nization might be more adequate than the
SIMD mode, where processors are synchro-
nized at the machine instruction level. A
multiprocessor model for those algorithms
in which processors operate independently
of each other, but can be synchronized by
exchanging messages among themselves or
with a controlling processor at intervals of
several thousand instructions, is more ap-
propriate for these algorithms. At the ini-
tiation time of a block sorting algorithm,
the controller assigns a number of proces-
sors to its execution. Because other op-
erations may already be executing, the
controller maintains a free list and assigns
processors from this list. In addition to the
availability of processors, the size of the
sorting problem is also considered by the
controller to determine optimal processor
allocation.

4.2 Bitonic Merge-Exchange

Consider the situation in which two pro-
cessors P~ and P~ each contain a sorted
block of length M, and we want to compare
and exchange records between the proces-
sors so that the lower M records reside in
P~ and the higher M in Pj. One way to
obtain this result is to execute the following
three steps:

(1) P~ sends its block to P~.
(2) P, performs a two-way merge-split.
(3) P, sends the high half-block to Pj.

fi

Figure 12. Bitonic merge-exchange step.

However, as indicated in the previous sec-
tion, the two-way merge-split requires a
processor's local memory size to be at least
4M. Another alternative is that Pj send one
of its records at a time and wait for a return
record from P, before sending the next
record. Suppose that M records (x~, x 2 , . . . ,
XM) are stored in increasing order in P~'s
memory and the M records (yl , Y2 , . . . , YM)
are stored in decreasing order in P / s mem-
ory. Let Pj send yl to P~. Pi then compares
xl and yl, keeps the lower of the two, and
sends back to Pj the higher record. This
procedure is then repeated for (x2, y2), • • •,
(XM, YM). This sequence of comparison-
exchanges constitutes the "bitonic merge"
and results in having the highest M records
in Pj and the lowest M in P~ [Alekseyev
1969; Knuth 1973]. Thus the merge-split
operation can now be completed by having
P, and Pj each perform a local sort of their
M records. Figure 12 illustrates the bitonic
merge-exchange operation for M = 5. It is
important to notice that the data exchanges
are synchronous (unlike in the two-way
merge-split operation). Thus the block
sorting algorithms based on the bitonic

Computing Surveys, Vol. 16, No. 3, September 1984

304 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

merge-exchange are more suitable for im-
plementation on parallel computers that
require a high degree of synchronization
between their processors.

The bitonic merge-exchange also re-
quires substantially less buffer space than
the two-way merge-split. Because the two-
way merge-split merges two blocks of size
M within a processor's local memory, it
uses (4.M) space. The bitonic merge-ex-
change requires space for only M + 1 rec-
ords. Finally, the comparisons (of pairs of
records) and the transfers are interleaved
in every bitonic merge-exchange step. The
two-way merge-split requires that an entire
block of data be transferred to a processor's
memory before the merge operation is ini-
tiated, whereas the bitonic merge-exchange
can overlap each record's transfer time with
processing time.

However, a major disadvantage of the
bitonic merge-exchange is the necessity for
performing a local sort of M records in each
processor after the exchange step is com-
pleted. To perform the local sort, a serial
sorting algorithm that permutes the records
in place {such as heap sort) should be used.
Otherwise the local sort might require more
memory than the exchange. Note that the
sequences generated by the bitonic ex-
change are bitonic. Thus sorting these se-
quences requires at most (M/2) log M com-
parisons and local moves.

4.2.1 Block Odd-Even Sort
Based on Bitonic Merge-Exchange

As with the block odd-even merge based
on two-way merge (Section 4.1.1), we start
with M records in each processor's memory
and perform an initial phase where each
processor independently sorts the sequence
in its memory. However, Steps 1 . . . p are
different. During odd (even) steps, odd-
(even-) numbered processors perform a bi-
tonic merge-exchange with their right
neighbor. Figure 13 illustrates this algo-
rithm for p = 4, where M = 5.

4.2.2 Block Bitonic Sort Based
on Bitonic Merge-Exchange

A fast and space-efficient block sorting al-
gorithm can be derived from Stone's ver-

sion of the bitonic sort, which was described
in Section 2.1.2. Consider a network of p
identical processors, where p is a power of
2, interconnected by two types of links (Fig-
ure 14):

(1) two-way links, between pairs of adja-
cent processors: POP1, P2P3 ;

(2) one-way shuffle links, connecting each
P, to its shuffle processor.

If each processor has a local memory of size
M + 1, then M . p records can be sorted by
alternating local-sort, block-bitonic ex-
changes between neighbor processors and
shuffle procedures. During a shuffle proce-
dure, each processor sends the records that
were in its memory, in order, to the corre-
sponding location of the shuffle processor's
memory and receives the records that were
in the memory of the reverse shuffle pro-
cessor. Figure 15 illustrates this algorithm
for p = 4, where M = 5.

5. EXTERNAL PARALLEL SORTING

In this section, we address the problem of
sorting a large file in parallel. Serial file
sorting algorithms are often referred to as
"external sorting algorithms," as opposed
to array sorting algorithms that are "inter-
nal." For a conventional computer system
the need for an external sorting algorithm
arises when the file to be sorted is too large
to fit in main memory.

Thus for a single processor the distinc-
tion between internal sorting and external
sorting methods is well known, and there
are accepted criteria for measuring their
respective performances. However, the
topic of external parallel sorting has not
yet received adequate consideration.

In Section 4, we presented a number of
parallel algorithms that can sort an array
that is initially distributed across the pro-
cessors' memories. The size of the array
was limited only by the total memory of the
system (considered as the concatenation of
the processors' local memories). By analogy
to the definition of serial internal sorting,
these algorithms may be called "parallel
internal sorting algorithms."

A parallel sorting algorithm is defined as
a parallel external sorting algorithm if it can

Computing Surveys, Vol. 16, No. 3, September 1984

20 recor~ i~ four
after initial

P o , . .z~
P! !

;P2 , • 19
P 3 2

{
compare and exchange

PO
~PI
iP2
:P3

P O
, PI.
P2
!P3

processor memori¢~
preproce=ing

t g 8 3 2
i

{ 2 3 5 6
12 8 5 0
4 5 9 13

(PO, PI) and (P2, P3)

z l ~ z l 3 1 3
. . , 7 1 9 I s s

2 { 4 5 $

' ' 19 { 12 I 8 9

l
localized sort

1

3 3 21 2
17 9 8 6
0 2 4 $

8 9 12 13

6
0

13

1
$

5

19

A Taxonomy of Parallel Sorting • 305

PO' 3 { 3 1 2 2 1
PI 0 I 1 2 4 $ 5
P2, , z ; ' { o { s 6 $
P3 , , 8 } 9 } 12 13 19

{
compare and exchange (PO, P1)

!

Po o 2 t 2t 21 1
P1 3 3 {,,4 } $ { 5̀

P~ . 8 ~I s{ 6{ $
P3 17 O I 12 { 13 { 19

l
localized sort

!

PO. .o{ i 2.l 2l 2
P1 • ' $ j{ $ 4 } 3 j 3
P2 ,, ' 5 1 6 8 8 9
P3 9 12 13 17 19

~d (P2, P~)

PO 3 3 2 t 2 l
P1 17 9 8 I 6 5
P2 ' ' 0 2 4 { 5 5
P3 8 9 12 { 13 19

{
compare and exchange PI and P2

!

PO 3 3 2 2 1
PI 0 2 4 $ $
P2 17 9.. 8 6 $
P3 8 9 12 13 19

I
localized sort

i

'i 0 1 2 4 $ S
17{0{ 8)6 $
8 } 9 { 12 { 13 I tO

P O ,

P1
P2
P3

Figure 13.

PO o ' I 2 21 2
P1 5 $ I 4 3 I 3

P2 5 6 1 8 8 1 9
P3 ~ { 1 2 13117 1~

I
compare and exchange P1 and P2

}

PO
'PI
P2
P3

0 1 2 t 2 2
,5 5 4 I 3 3
,5 6 s { s o
9 I t 2 { 1 3 1 1 7 19

{
localized sort

o, '1 'I 3 3 4 5 S
s 61 s { s { 9
9 ,2 { ,3 t , 7 1 , 9

Block odd-even sort (20records).

Computing Surveys, Voi. 16, No. 3, September 1984

306 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

Secondory Memory
(~) i-th Processor

) Controller
. Control Line

Two-woy Link
One-woy Processor-to-
Processor Link

(a)

Figure 14. Processors' rater-
connection for block-bitomc
sort. (a) p = 4. (b) p = 16.

(b)

sort a collection of elements that is too
large to fit in the total memory available in
the multiprocessor. This definition is gen-
eral enough to apply to both categories of
parallel architectures: the shared memory
multiprocessors and the loosely coupled
multiprocessors (also called "multicompu-
ters").

For shared memory multiprocessors, an
external sorting algorithm is required when
the shared memory is not large enough to
hold all the elements (and some work space
to execute the sort program). On the other
hand, for loosely coupled multiprocessors,
the assumption is that the source records
cannot be distributed across the processors'
local memories. That is, the multicomputer

has p identical processors and each pro-
cessor's memory is large enough to hold k
records, but the source file has more than
p. k records. In both cases, the processor
can access a mass-storage device on which
the file resides. At termination of the al-
gorithm, the file must be written back to
the mass-storage device in sorted order. 3

An early result on tape parallel sorting
appeared in Even [1974]. Recently in Bit-
ton [1982], several parallel sorting algo-
rithms have been proposed for files residing
on a modified moving-head disk. ~

3 Physmal order on the mass storage devine must be
defined according to the physical characteristics of the
storage device. For example, for a magnetic disk, a
track-numbering convention must be agreed upon.

Computing Surveys, Vol 16, No. 3, September 1984

P0
PI
P2
P3

PO
P1
P2
P 3 . ,

PO
PI
P2
P3

A Taxonomy o[Parallel Sorting

8 2 { l 3 $
8 12 ! 0 19 $

{
A Perfect Shuffle

~1 ~= o zot s

$ g 13 4 2

PO
P1
P2
P3

PO
PI
P2 .,,
P3

Slap $

, l : o 1 1 9 I s
6 2 ~{ 3l s
s o{,3l 4{

l
A Perfe¢$ $hu~'le

,~ ml , l 3{ s
s ~21 OllOl

{

3 { 3 1 ~.
s l s l o ~r

i9 ~2 is J ~ ~
2 1 4 I S { sJ 0

S~e~ l
2{ 3 3 2
6 I 8 8 g
ig I 12 $ g
21 4 I s s

A Pe~ee~ Shuffle

l
r...xcH.~,,c~. Co. ,1

!

(a)

I
17
1.3
0

(b)

PO
P1
P2
P3

PO
P1
P2
P3

PO - -
PI -----
P2 - -

P3 • t

i 21 2 1 3 { 3
19 13 I 12 { 9 I 8
s s l ~ { 2 l o
s 6{ 8 1 0 1 1 7

I
A Perfect, Shuffle

L

~{ ~{ 21313
s s t 4 z,I o
I~ 13l ~ 2 l o t s
,~ ol s}olt7

I

~{2{ ~l 2l o
s l s l , I 3l 3

slo I s I 61 s
l ? { g , 12 i~1 ~o

PO o z { 2 ~
PZ 3 3 } 4 s $
P2 S t 8 8 8 g
P3 . ~ " ~ 9 t 12 13 17 lg

(c)

Figure 15. Block-bltonic sort. (a) Stage 1. (b) Stage 2. (c) Stage 3.

• 3 0 7

Computing Surveys, Vol. 16, No. 3, September 1984

308 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

5.1 Parallel Tape Sorting

The sorting problem addressed by Even
[1974] is to sort a file of n records with p
processors (where n is much larger than p)
and 4p magnetic tapes. The only internal
memory requirement is that three records
could fit simultaneously in each processor's
local memory. Under those assumptions,
Even proposes two methods for paralleliz-
ing the serial two-way external merge sort
algorithm. In the first method, all the pro-
cessors start together and work independ-
ently of each other on separate partitions
of the file. In the second, processors are
added one at a time to perform sorting in a
pipelinelike algorithm. Both methods can
be described briefly:

Method 1. Each processor is assigned
nip records and four tapes and performs a
(serial) external merge sort on this subset.
After p sorted runs have been produced by
this parallel phase, during a second phase
a single processor merge sorts these runs
serially.

Method 2. The basic idea is that each
processor performs a different phase of the
serial merge procedure. The ith processor
merges pairs of runs of size 2 ~-1 into runs
of size 2 ~. Ideally, n is a power of 2 and log
n processors are available. A high degree of
parallelism is achieved by using the output
tapes of a processor as input tapes for the
next processor, so that, as soon as a pro-
cessor has written two runs, these runs can
be read and merged by another processor.
In order to overlap the output time of a
processor with the input time of its succes-
sor, each processor writes alternately on
four tapes (one output run on each tape).

These methods show that, from the al-
gorithmic point of view, it is possible to
introduce a high degree of parallelism in
the conventional two-way external merge-
sort. However, the assumptions about the
mass storage device do not consider con-
straints imposed by technology. Like the
shared memory model for array sorting, a
parallel file sorting model that assumes a
shared mass storage device with unlimited
I/O bandwidth (e.g., a model with p pro-

cessors and 4p magnetic tape drives) pro-
vides very limited insight into practical as-
pects of implementation.

5.2 Parallel Disk Sorting

The notion of a sorted file stored on a
magnetic disk requires that physical order
be defined since disks are not sequential
storage media. Within a disk track records
are stored sequentially, but then a conven-
tion is needed for numbering tracks. For
example, adjacent tracks could be defined
as consecutive tracks on one disk surface.
This convention is adequate if a separate
processor is associated width each disk sur-
face. Another way to model the mass-stor-
age device is to consider a modified moving-
head disk that provides for parallel read/
write of tracks on the same cylinder (Figure
17). Disks that provide this capability have
been proposed [Banerjee et al. 1978] and,
in some cases, already built. The idea was
pioneered by database machine designers,
and prototypes have been built in the
framework of database research projects
(see, e.g., Leilich et al. [1978]). Commercial
parallel readout disks have recently been
made available for high-performance com-
puters (e.g., a 600-Mbyte drive with a four-
track parallel readout capability and a data
transfer rate of 4.84 Mbytes/second is now
available for the Cray-1 computer). Thus
parallel readout disks appear to constitute
a viable compromise between the cost-ef-
fective, conventional moving-head disk and
the obsolete fixed-head disk.

In order to minimize seek time, two disk
drives can be used concurrently. During
execution of a single phase of a sorting
algorithm, one drive can be utilized for
reading and the other for writing.

In Bitton-Friedland [1982] a number of
parallel external sorting algorithms and ar-
chitectures are examined and analyzed.
The mass-storage device is modeled as a
parallel read/write disk. The algorithm
with the best performance is a parallel two-
way external merge-sort, termed the par-
allel binary merge algorithm. It is an im-
proved variation of Method 1 in Section
5.1, achieved by parallelizing the second
phase of this method.

Computing Surveys, Vol 16, No 3, September 1984

A Taxonomy of Parallel Sorting

[]
[]
[]
[]

8

• 309

SUBOPTIMAL
STAGE

OPTIMAL
STAGE

POSTOPTIMAI~
STAGE

Figure 16.

IM
Parallel bmary merge sort.

When the number of output runs is 2 k,
and k > 1, 2 h-~ processors can be used to
perform the next step of the merge sort
concurrently. Thus execution of the paral-
lel binary merge algorithm can be divided
into three stages, as shown in Figure 16.
The algorithm begins execution in a subop-
timal stage {similar to Phase 1 in Method
1), in which sorting is done by successively
merging pairs of longer runs until the num-
ber of runs is equal to twice the number of
processors. During the suboptimal stage,

the processors operate in parallel, but on
separate data. Parallel I/O is made possible
by associating each processor with a surface
of the read disk and a surface of the write
disk.

When the number of runs equals 2.p,
each processor will merge exactly two runs
of length N/2p. We term this stage the
optimal stage. During the postoptimal
stage, parallelism is employed in two ways.
First, 2 k-1 processors are utilized to concur-
rently merge 2 k-1 pairs of runs {this occurs

Computing Surveys, Vol. 16, No. 3, September 1984

4 , - ,= ~ ~ . , _ . : ~ _ ~ .

310 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

Figure 17. Architecture for the par-
allel binary merge sort.

input
drtve

outpu
drive

after log(re~k) merge steps). Second, pipe-
lining is used between merge steps. That is,
the ith merge step starts as soon as Step
(i - 1) has produced one unit of each of two

ou tpu t runs (where a unit can be a single
record or an entire disk page).

The ideal architecture for the execution
of this algorithm is a binary tree of pro-
cessors, as shown in Figure 17. The mass-
storage device consists of two drives, and
each leaf processor is associated with a
surface on both drives. In addition to the
leaf processors, the disk is also accessed by
the root processor to write the output file.
This organization permits leaf processors
to do input/output in parallel, while reduc-
ing almost by half the number of processors
that must actually do input/output.

5.3 Analysis of the Parallel External
Sorting Algorithm

For serial external sorting, numerous em-
pirical studies have been done on real corn-

puters and real data in order to evaluate
the performance of external sorting algo-
rithms. The results of these studies have
complemented analytical results when
modeling analytically the effect of access
time and the impact of data distribution
was too complex. In a parallel environment,
the analytical performance evaluation of an
external sorting scheme is made even more
difficult by the complexity of the input/
output device.

We can get some indication of the par-
allel speedup that can be achieved by per-
forming an external sort in parallel by as-
suming that the available input/output
bandwidth is limited only by the number of
processors. However, a satisfactory analy-
sis of parallel external sorting algorithms
must also consider the constraints imposed
by mass-storage technology. For example,
if the modified disk described in Section
5.2 is used for storage, the suboptimal stage
for the parallel binary merge algorithm can
either be highly parallel, or almost sequen-

Coml~utmg Surveys, Vol. 16, No, 3, September 1984

tial, depending on whether or not the pro-
cessors request data from several tracks on
the same cylinder.

6. HARDWARE SORTERS

The high cost and frequent need of sorting
are motivating the design of "sort engines,"
which could eventually off-load the sorting
function from general-purpose central
processing units (CPUs). By implementing
the sequence of comparison and move steps
required by an efficient sorting algorithm
in hardware, one could realize a low-cost,
fast, hardware device that would signifi-
cantly lighten the burden on the CPU. Sev-
eral alternative designs of hardware sorters
recently have been proposed [Chen et al.
1978; Chung et al. 1980; Dohi et al. 1982;
Lee et al. 1981; Thompson 1983; Yasuura
et al. 1982], and preliminary evaluations
seem to indicate that a VLSI implementa-
tion of sorting devices could soon become
feasible. The relatively simple logic re-
quired for sorting constitutes a strong ar-
gument in favor of this approach. In addi-
tion, the advent of new and inexpensive
shift-register technologies, such as charge-
coupled devices and bubble memories, is
stimulating new designs of hardware sort-
ers based on these technologies [Chung et
al. 1980; Lee et al. 1981].

A future outcome of improvement in
technology might be that bubble chips
could provide storage for large files with
on-chip sorting capabilities. In this case,
the sorting function could be provided by
the mass-storage devices without requiring
the transfer of files to a dedicated sorting
machine or the main memory of a general-
purpose computer. However, it is prema-
ture at this point to determine whether or
not advances in technology will be able to
provide for intelligent mass-storage devices
with sorting capabilities.

Hardware sorters, in particular VLSI
sorting circuits, are at present the focus of
active research. Theoretical problems re-
lated to area-time complexity are also
drawing considerable attention to VLSI
sorting [Leiserson 1981; Thompson 1980,
1983]. It is beyond the scope of this paper
to present a proper survey of the theoretical

A Taxonomy of Parallel Sorting , 311

bounds obtained for chip area and time
complexity of VLSI sorters. These results
pertain to an area of research in complexity
theory that is being defined, and they can-
not be presented without properly defining
VLSI circuit areas and introducing the the-
oretical area • time 2 trade-off. 4

In the remainder of this section, we pres-
ent an overview of designs that have been
proposed for hardware sorters. We have
chosen to concentrate on sorters that were
originally conceived for the magnetic bub-
ble technology because they illustrate well
how technology constraints define trade-
offs between sort;ng speed and parameters
related to input/output bandwidth, mem-
ory, and number of control lines required
by on-chip sorters. In particular, we shall
describe the rebound sorter and the up-
down sorter (which are clever pipeline ver-
sions of the odd-even transposition sort
(Section 1.1)) and a number of magnetic
bubble sorters that integrate a sorting ca-
pability in bubble memory.

6.1 The Rebound Sorter

The uniform ladder [Chen 1976] is an N-
loop shift-register structure capable of stor-
ing N records, one record to a loop. Since
records stored in adjacent loops can be ex-
changed, this storage structure is very suit-
able for a hardware implementation of the
odd-even transposition sort (see Section
1.1). If the time for a bit to circulate within
a loop is called a period, then N records
(which have been previously stored in the
ladder) can be sorted in iN + 1)/2 periods
using i N - 1) comparators.

Further investigation of the ladder struc-
ture led to the design of a new sorting
scheme, where input/output of the records
can be completely overlapped with the sort-
ing time. This scheme is the rebound sort

4 In a recent work (pubhshed after this paper was
written), Thompson has surveyed 13 different VLSI
circuits that implement a range of sorting schemes:
heap sort, pipelined merge-sort, bitonic sort, bubble
sort, and sort by enumeration. For each of these
schemes one or several circuit topologms (linear array,
mesh, binary tree, shuffle-exchange and cube-con-
nected cycles, mesh of trees) are considered, and the
resulting sorter is evaluated with respect to its area •
time 2 complexity.

Computing Surveys, Vol. 16, No. 3, September 1984

312 * D. Bitton, D. J. DeWitt, D. K. Hsiao, and J. Menon

Figure 18. The rebound sorter. (a) The
steering unit. (b) Stacking steering units.
[From Chen et al. 1978. © IEEE 1978.]

L

R

?
(a)

Outpul

(b)

[Chen et al. 1978]. The basic building block
of the rebound sorter is the steering unit
(Figure 18a), which has an upper-left cell
L and a lower-right cell R. A sorter for N
records is assembled by stacking (N - 1)
steering units, plus a bottom cell and a top
cell (Figure 18b). Associated with the two
cells in a steering unit is a comparator K,
which can compare the two values stored
in the upper-left and lower-right cells. A
record may be stored across adjacent cells
in two steering units, but the sortin~ key
(.assumed to be at the head of the record)
must fit entirely in one cell, so that two
keys can be compared in a single steering
unit. Sorting is performed by pipelining
input records through the stack of steering
units. Records enter the sorter through the
upper-left cell of the top steering unit and
emerge in sorted order from the top cell (at
the upper-right corner of the stack) after
2N steps. The sorting scheme is illustrated
in Figure 19 for N - 4. The sorter alternates
between a decision state and a continuing
state. In the decision state, each steering
unit compares the keys stored in its upper-
left and lower-right cells and emits the keys
either horizontally (upper-left key to the
right, lower-right key to the left) or verti-
cally (upper-left key to the upper unit,
lower-right key to the lower unit), depend-
ing on the outcome of the comparison. In

the continuing state, each steering unit
continues to emit its contents in the direc-
tion determined in the previous decision
step. The continuing steps are required to
append the body of the records to their key.
It is readily seen that the first key emerges
from the sorter after N steps (to + 8 in
Figure 9) and the complete sorted sequence
is produced in the next N steps.

6.2 The Up-Down Sorter

A significant improvement of the ladder
sorter can be achieved by incorporating the
comparison function in the basic steering
unit and using an "up-down" sorting
scheme instead of the rebound sort. To sort
2N keys, the "compare~steer bubble sorter"
[Lee et al. 1981] requires N compare/steer
units stacked on top of each other. It is
assumed that the entire record fits in a cell
(thus two records are stored in a compare/
steer unit). The up-down sort is illustrated
in Figure 20 for N = 3 (three compare/steer
units sorting six records). The up-down
sorter operates in two phases. During the
downward input phase, 2N keys are loaded
in 2N periods. During each period of the
input phase, a key enters the sorter and all
units push down the larger of their two
keys (to the unit beneath them). During
the upward output phase, each unit pops

Computing Surveys, VoL 16, No. 3, September 1984

A
D
B
C z
Cl

A
D
B
C2
¢,
c,

10 to+ I

A Taxonomy of Parallel Sorting

I I

A z- C>A I AA2
!

Bt~. ~,B 2 Bz.t>Bt

ce. ,c2
V J
O~ .,,cz o~- ~>ol

t o + 8 t o + 9

Figure 19.

A
0 A A
B~ D D 2 A A 2
B~" B 2 D D 2 A I
• ~, ¢,
c2 B,, R'

~l C 2 I~ " B2" I>B I

:,c, c?- ;,c2

to+2 to+5 to+4 to+5 to+6

A A
A 'A B B

A Bi B C C
I

! i ! i I
BA2 C~l C&2 O&l 0 2

I I
' C' D~I D2 Cz.>Cl . ~z

' ! I !
O I '~ ~,O~, OZ- I>Dt! O2

to+lO to+ll to÷12 to+IS to+14

The rebound sort for four records. [From Chen et al. 19'/8. © IEEE 19'/8.]

A 2

At

313

C2~ >C j

to+7
A
B
C
Ot
I

02

to+15

up the smaller of its two keys (to the unit
above it), and a key is output in every
period.

The up-down sorter eliminates the large
number of control lines required by the
rebound sorter. Whereas the rebound sorter
needs multiple control lines to individually
activate switches of the bubble ladder, the
up-down sorter can be implemented with a
single control line for resetting all the com-
pare/steer units at the beginning of each
phase. Thus on-chip compare/steer units
have a better chance to provide a chip
implementation of large files sorters.

Both the rebound sorter and the up-
down sorter have the very desirable prop-
erty of completely overlapping input/out-
put time with sorting time. Thus, assuming
that only serial input/output of data rec-
ords is available, they provide an optimal
hardware implementation of file sorting.

6.3 Sorting within Bubble Memory

The sorter described in the previous section
incorporates the comparison function in

the design of the bubble chip. Thus this
type of chip constitutes an intelligent mem-
ory capable of performing the logical oper-
ations required by sorting. The sorters pro-
posed by Chung et al. [1980] also attach
comparators to the bubble memory, but in
addition they eliminate the input/output
function that is an intrinsic part of the
previous sorting algorithms. The motiva-
tion for designing bubble elements that sort
in situ stems from the assumption that
magnetic bubble memory may soon provide
cost-effective mass-storage systems. If ad-
vances in technology make this assumption
realistic, then sorting a file will only require
rearranging records in mass storage accord-
ing to the result of comparisons performed
within the memory, without input/output
operations or CPU intervention.

Four models of intelligent bubbles are
considered by Chung et al. [1980], and for
each model an alternative sorting scheme
is proposed. The models differ in the size
of the bubble loops and the number of
switches required between the loops (to
perform comparisons). The first two

Computing Surveys, Vol. 16, No. 3, September 1984

314 D. Bitton, D. ~

5
2 5
6 2
I 6
3 I
4 3

' co I j4
I

' 0 0

I

|

t

to t l

D. J. De Witt, D. K. Hsiao, and J. Menon

|

!

|

t2

5
2
6

* !

, 3 "
* 4

I
O0"t

!

* CO

|

t3

5
2
(P

I

I

3

|

t4

5

, 5 :
* 3 2 -~ ,,t- + -

i
* 4 , 4

¢ .
i

t 5 t6oO

d)
t 7

I
I 2

I 2 3
I 2 3 4

I 2 3 4 5
2 3 4 5 6

tg -g col * 6 t

cb cb
t 8 t 9 tlO t l l t12

Figure 20. Operatmn of the up-down sorter for six records (only the keys are
shown). [From Lee et al. 1981 © IEEE 1981]

models implement a bubble sort and an
odd-even transposition sort, respectively,
whereas the other two implement a bitonic
sort. The first model has two loops, one of
size (n - 1) and the other of size 1, and a
single switch between them {Figure 21a) is
used to perform the bubble sort. The second
model is a linear array of loops, all of size
1, with a switch between every pair of ad-
jacent loops (Figure 21b). The (n - 1)
switches perform comparisons in parallel,
according to the odd-even transposition
scheme (Section 1.1). For the other two
models (Figure 21c, d), the basic idea is to
have the option to open a switch between
adjacent loops {that are of the same size in
Model 3, but of different sizes in Model 4)
so that the two loops are collapsed into a

larger loop. At every step of the bitonic
sort, larger loops are formed that contain
bitonic sequences. Because they implement
a faster algorithm, these sorters are faster
than the first sorter. However, the trade-
off is a higher complexity of hardware
{more switches and more control states per
switch), which may be beyond the present
limits of chip density. For example, the
bubble-sort sorter sorts in O(n 2) compari-
son steps, but it requires only one simple
switch (with three control states). On the
other hand, a bitonic sorter sorts in time
O(n log 2 n), but requires log n complex
switches {each with 3 log n control states).
Thus these detailed designs of bubble sort-
ers provide an excellent illustration of cost-
performance trade-offs in sorting.

Computing Surveys, Vol. 16, No 3, September 1984

°

(n'-I) I

I
I I

(a)

oF-lol I
I I

(b)

I I I I

(c)

I I I '
I 2 4

(d)

6.4 Summary and Recent Results

Several designs of hardware sorters have
been proposed recently, and preliminary
evaluations of their feasibility are being
performed. One of the most promising ap-
proaches appears to be the implementation
of a simple pipelined sorting scheme on
bubble chips.

However, a number of alternative designs
are being investigated. More recently, two
detailed layouts of VLSI sorters have been
proposed. A high-capacity cellular array
that sorts by enumeration is investigated
by Yasuura et al. [1982]. In Dohi et al.
[1982], cells that are able to sort-merge
data in compressed form are connected in
a binary tree topology to constitute a pow-
erful sorter. In both cases, the design of the
basic cell is simple enough to allow very
high density packaging with current or
near-future technology.

The parallel sorting algorithms used by
currently proposed hardware sorters are
simple and slow compared to either the
sorting networks or the shared memory
model algorithms. Although theoretical
complexity bounds are being investigated
for faster VLSI sorters and important re-
sults have been achieved [Bilardi and Pre-
parata 1983; Thompson 1983], the feasibil-

A Taxonomy of Parallel Sorting * 315

I I

Figure21. Bubble loop structures
for sorting. (a) Model 1. (b) Model 2.
(c) Model 3. (d) Model 4.]From
Chung et al. 1980. © IEEE 1980.]

2 k

ity of fast high-capacity VLSI sorters is
still an open question. However, this direc-
tion of research on parallel sorting appears
to be very promising. A well-defined VLSI
complexity model that combines some
measures of hardware complexity with time
efficiency provides a systematic approach
to the analysis of parallel sorting algo-
rithms. For bubble memory devices, when
assuming that records are read and written
serially, it has been shown that input/out-
put time can be effectively overlapped with
sorting time. Thus advances in technology
may soon make a well-designed, dedicated
sorting device a cost-effective addition to
many computer systems.

7. CONCLUSIONS AND OPEN PROBLEMS

Over the last decade, parallel sorting has
been the focus of active research. There are
many parallel sorting algorithms currently
known, and new algorithms are being de-
veloped-ranging from network sorting al-
gorithms to algorithms for hypothetical
shared memory parallel computers or VLSI
chips. Research on parallel sorting has of-
fered many challenges to both theoreticians
and systems designers. From a theoretical
point of view, the main research problem
has been to design algorithms that, by sys-

Computing Surveys, Vol. 16, No. 3, September 1984

316 • D. Bitton, D. J. De Witt, D. K. Hsiao, and J. Menon

tematically exploiting the intrinsic paral-
lelism in sorting and merging, would reach
the time theoretical lower bound, that is,
algorithms that would sort n numbers in
time O(log n) on a hypothetical O(n)-pro-
cessor parallel machine. From a practical
point of view, systems designers have in-
vestigated feasibilit:~ ~ with current or near-
term technology, and integration of input/
output time in the cost of parallel sorting.

Despite the apparent disparity among
the numerous parallel sorting algorithms
that have been proposed, we have shown
how these algorithms may be broadly class-
ified into three categories: network sorting
algorithms, shared memory sorting algo-
rithms, and parallel file sorting algorithms.
The first category includes algorithms that
are based on nonadaptive, iterative merging
rules. Although first proposed in the con-
text of sorting networks, the two funda-
mental parallel merging algorithms (the
odd-even merge and the bitonic merge de-
scribed in Section 2.1) were subsequently
embedded in a more general model of par-
allel computation, where processors ex-
change data synchronously along the lines
of a sparse interconnection network. In
particular, the bitonic sort has been
adapted for mesh-connected processors
{Section 2.2.1) and for a number of net-
works such as the shuffle, the cube, and the
cube-connected cycles.

Algorithms in the second category re-
quire a more flexible pattern of memory
accesses than the network sorting algo-
rithms. They assume shared memory
models of computation, where processors
share read and write access to a very large
memory pool with various degrees of con-
tention and different policies of conflict
resolution. For the most part, shared mem-
ory parallel sorting algorithms are faster
than the network sorting algorithms, but
they are far less feasible from a hardware
point of view. In Table 1, we briefly sum-
marize the asymptotic bounds of the main
algorithms in both the network and the
shared memory categories in terms of the
number of processors utilized and execu-
tion time (the latter being estimated as the
number of parallel comparison steps re-
quired by the algorithms).

Table 1. Number of Processors and Execution Time
Required by Parallel Sorting Algorithms

Algorithm Processors Time

Odd-even transposition n O(n)
Batcher's bitonic O(n log 2 n) O(log 2 n)
Stone's bitonic n /2 O(log 2 n)
Mesh-bitonic n O(~j'n)
Muller-Preparata n 2 O(log n)
Hirschberg (1) n O(log n)
Hirschberg (2) n 1+1/k O(k log n)
Preparata (1) n log n O(log n)
Preparata (2) n 1+Ilk O(k log n)
Ajtai et al n log n O(log n)

In the third category of parallel sorting
algorithms, we include both internal and
external parallel sorting algorithms that
utilize limited parallelism to solve a large-
sized problem. First, we dealt with block
sorting algorithms, which can sort a num-
ber of elements proportional to the number
of available processors (the proportionality
constant being dependent on the size of the
processors' memory). Then we introduced
parallel external sorting algorithms, which
address the problem of sorting in parallel
an arbitrarily large mass-storage file.

In addition to these three classes of par-
allel sorting algorithms, we described (in
Section 6) a number of hardware sorter
designs. Hardware sorters that have been
proposed assume a fixed, sparse intercon-
nection scheme between the processing ele-
ments. The parallel sorting algorithms uti-
lized by these sorters are highly synchro-
nous and, for the most part, are derived
from algorithms that we have classified as
network sorting algorithms (in particular,
the bitonic sort algorithm). Although the
hardware sorters did not introduce inno-
vative parallel sorting algorithms, new and
important directions of research on parallel
sorting are being explored in their design
process. One such direction is the explora-
tion of algorithms that exploit the charac-
teristics of new storage technologies such
as magnetic bubbles. Another is the inte-
gration of VLSI hardware complexity in
cost models by which parallel sorting algo-
rithms are being evaluated.

One conclusion emerges clearly from this
survey. Most research in the area of parallel
sorting has concentrated on finding new

Computing Surveys, Vol 16, No. 3, September 1984

ways to speed up the theoretical computa-
tion time of sorting algorithms, whereas
other aspects (such as technology con-
straints or data dependency) have received
less consideration. Typically, algorithms
have been developed for hypothetical com-
puters that utilize unlimited parallelism
and space to solve the sorting problem in
asymptotically minimal time. It seems that
today the complexity of sorting is fairly
understood, whether on networks or on
shared memory parallel processors. Open
questions that remain on the complexity of
parallel sorting are mostly related to newer
models of VLSI complexity that combine
chip area with time [Thompson 1983].

It might be the case that after a decade
of research devoted mainly to the theoret-
ical complexity of parallel sorting, aspects
related to the feasibility of parallel sorting
in the context of current or near-term tech-
nology will now be more systematically
explored. To appreciate the practical im-
portance of parallel sorting, one should
remember that the first parallel sorting
algorithms were intended to solve a hard-
ware problem: building a switching network
that could provide all permutations of n
input lines, with a delay shorter than the
time required by serial sorting. It would be
interesting, now that many fast parallel
sorting algorithms are known, to investi-
gate whether these algorithms can be
adapted to realistic models of parallel com-
putation. In particular, further research is
needed to address issues related to limited
parallelism (to remove the constraint relat-
ing the number of processors to the problem
size), partial broadcast (to replace simul-
taneous reads to the same memory loca-
tion), and resolution of memory contention.
Another important problem is related to
the validity of the performance criteria by
which parallel sorting algorithms have been
previously evaluated. It is clear that com-
munication, input/output costs, and hard-
ware complexity must be integrated in a
comprehensive cost model that is general
enough to include a wide range of parallel
processor architectures. In particular, the
initial cost of reading the source data into
the processors' memories has been largely
ignored by previous research on parallel
sorting. Although one is justified in ignor-

A Taxonomy of Parallel Sorting • 317

ing this issue when considering a serial,
internal sorting algorithm, the situation is
quite different with parallel processing. On
a single processor the source data are read
sequentially into memory. For a parallel
processor there is the possibility that sev-
eral processors can simultaneously read or
write. On the ILLIAC-IV computer, for
example, a fixed-head disk was used for
concurrent input/output by all 64 proces-
sors. However, when a significantly larger
number of processors is involved, only part
of them may be able to perform input/
output operations concurrently. Thus, for
parallel internal sorting, the cost of reading
and writing the data should be incorporated
when an algorithm is evaluated. In partic-
ular, there may be no point in using a
parallel sorting algorithm that requires
only O(log n) time, if the start-up cost to
get the data in memory were O(n). Model-
ing the cost of input/output is even more
crucial when the problem of sorting a large
data file in parallel is addressed. The im-
portance of file sorting in database systems
will undoubtedly motivate further research
in this direction.

REFERENCES

AJTAI, M, KOMLOS, J., AND SZEMER~DI, E
1983. An O(n log n) sorting network. In Pro-
ceedings of the 15th Annual ACM Symposium on
Theory of Computing (Boston, Apr. 25-27). ACM,
New York, pp. 1-9.

ALEKSEYEV, V. E. 1969. On certain algorithms for
sorting with minimal memory. Klbernettca 5, 5.

BANERJEE, J., BAUM, R. I., AND HSIAO, D. K.
1978. Concepts and capabilities of a database
computer. ACM Trans. Database Syst. 3, 4 (Dec.),
347-384.

BATCHER, K. E. 1968. Sorting networks and their
apphcatlons. In Procee&ngs of the 1968 Spring
Joint Computer Conference (Atlantic City, N.J.,
Apr. 30-May 2), vol. 32. AFIPS Press, Reston,
Va., pp. 307-314.

BAUDET, G., AND STEVENSON, D. 1978. Optimal
sorting algorithms for parallel computers. IEEE
Trans. Comput. C-27, 1 (Jan.).

BENTLEY, J. L., AND KUNG, H. T. 1979. A tree
machine for searching problems. In Proceedings
of the 1979 International Conference on Parallel
Processing (Aug.).

BILARDI, G., AND PREPARATA, F. P. 1983. A mira-
mum area VLSI architecture for O(log n) time
sorting. TR-1006, Computer Science Depart-
ment, Univ. of Illinois at Urbana-Champaign
(Nov.).

Computing Surveys, Vol. 16, No. 3, September 1984

318 • D. Bitton, D. J. DeWitt, D. K. Hsiao, andJ. Menon

BITTON, D., AND DEWITT, D. J. 1983. Duplicate
record elimination in large data files. ACM Trans.
Database Syst. 8, 2 (June), 255-265.

B1TTON-FRIEDLAND, D. 1982. Design, analysis and
implementation of parallel external sorting algo-
rithms. Ph.D. dissertation, TR464, Computer
Science Department, Univ. of Wisconsin, Madi-
son (Jan.).

BORODIN, A., AND HOPCROFT, J. E. 1982. Routing,
merging and sorting on parallel models of com-
putation. In Proceedings of the 14th Annual ACM
Symposium on Theory of Computing (San Fran-
cisco, Calif., May 5-7). ACM, New York, pp. 338-
344.

BRYANT, R. 1980. External sorting in a layered stor-
age architecture. Lecture. IBM Research Center,
Yorktown Heights, N.Y.

CHEN, T C., LUM, V. Y., AND TUNG, C. 1978. The
rebound sorter: An efficient sort engine for large
files. In Proceedings of the 4th International Con-
ference on Very Large Data Bases (West Berlin,
FRG, Sept. 13-15). IEEE, New York, 312-318.

CHUNG, K., LuccIo, F., AND WONG, C. K. 1980. On
the complexity of sorting in magnetic bubble
memory systems. IEEE Trans. Comput. C-29
(July).

DOHI, Y., SUZUKI, A., AND MATSUI, N. 1982.
Hardware sorter and its application to data base
machine. In Proceedings of the 9th Conference on
Computer Architecture (Austin, Tex., Apr. 26-
29). IEEE, New York, pp. 218-225.

EVEN, S. 1974. Parallelism in tape-sorting. Commun.
ACM 17, 4 (Apr.), 202-204.

FENG, T.-Y. 1981. A survey of interconnection net-
works. Computer 14, 12 (Dec.).

FISHBURN, J. P., AND FINKEL, R. A. 1982. Quotient
networks. IEEE Trans Comput C-31, 4 (Apr.).

GAVRIL, F. 1975. Merging with parallel processors.
Commun ACM 18, 10 (Oct.), 588-591.

HIRSCHBERG, D. S. 1978. Fast parallel sorting algo-
rithms. Commun. ACM 21, 8 (Aug.), 657-666.

HSlAO, D. C., AND MENON, M. J. 1980. Parallel
record-sorting methods for hardware realization.
Tech. Rep. OSU-CISRC-TR-80-7, Computer and
Science Information Dept., Ohio State Univ., Co-
lumbus, Ohio (July).

KNUTH, D. E. 1973. Sorting and searching. In The
Art of Computer Programming, vol. 3 Addison-
Wesley, Reading, Mass

KUMAR, M., AND HIRSCHBERG, D. S. 1983. An effi-
cient implementation of Batcher's odd-even
merge algorithm and its application in parallel
sorting schemes. IEEE Trans Comput C-32
(Mar.).

LEE, D. T., CHANG, H., AND WONG, K. 1981. An on-
chip compare/steer bubble sorter. IEEE Trans
Comput. C-30 (June).

LEILICH, H. O., STIEGE, G, AND ZEIDLER, H. C.
1978. A search processor for database manage-
ment systems. In Proceedings of the 4th Confer-
ence on Very Large Databases (West Berlin, FRG,
Sept. 13-15) IEEE, New York, pp. 280-287.

LEISERSON, C. E. 1981. Area-efficient VLSI com-
putation. Ph.D. dissertation. Tech. Rep. CMU-
CS-82-108, Computer Science Dept.; Carnegie-
Mellon Univ., Pittsburgh, Pa. (Oct.).

MULLER, D. E., AND PREPARATA, F. P. 1975. Bounds
to complexities of networks for sorting and for
switching. J ACM 22, 2 (Apr.), 195-201.

NASSIMI, D., AND SAHNI, S. 1979. Bitonic sort on a
mesh connected parallel computer. IEEE Trans.
Comput C-27, 1 (Jan.).

NASSIMI, D., AND SAHNI, S. 1982. Parallel algo-
rithms to set up the Benes permutation network.
IEEE Trans Comput. C-31, 2 (Feb.).

PEASE, M. C. 1977. The indirect binary n-cube mi-
croprocessor array. IEEE Trans Comput C-26,
5 (May).

PREPARATA, F. P. 1978. New parallel sorting schemes.
IEEE Trans. Comput. C-27, 7 (July).

PREPARATA, F. P., AND VUILLEMIN, J. 1979. The
cube-connected-cycles. In Proceedings of the 20th
Symposium on Foundations of Computer Science.

SELINGER, P. G., ASTRAHAN, M. M, CHAMBERLIN,
D D., LORIE, R. A., AND PRICE, T. G. 1979.
Access path selection in a relational database
system. In Proceedings of the ACM SIGMOD
International Conference on Management of Data
(Boston, Mass., May 30-June 1). ACM, New
York, pp. 23-34.

SHILOACH, Y , AND VISHKIN, U. 1981. Finding the
maximum, merging and sorting in a parallel com-
putation model, d Algorithms 2, 1 (Mar.).

SIEGEL, H. J. 1977. The universality of various types
of SIMD machine interconnection networks. In
Proceedings of the 4th Annual Symposzum on
Computer Architecture (Silver Spring, Md., Mar.
23-25). ACM SIGARCH/IEEE-CS, New York.

SIEGEL, O. J. 1979. Interconnection networks for
SIMD machines. IEEE Comput 12, 6 (June).

STONE, H. S. 1971 Parallel processing with the per-
fect shuffle IEEE Trans Comput C-20, 2 (Feb.).

THOMPSON, C. D. 1980. A complexity theory for
VLSI. Ph.D. dissertation, Tech. Rep. CMU-CS-
80-140, Computer Science Dept, Carnegie-Mel-
lon Univ, (Aug.).

THOMPSON, C. D. 1983. The VLSI complexity of
sorting. IEEE Trans Comput C-32, 12 (Dec.).

THOMPSON, C. D., AND KUNG, H T 1977 Sorting
on a mesh-connected parallel computer. Com-
mun. ACM 20, 4 (Apr.), 263-271.

VALIANT, L G. 1975 Parallelism in comparison
problems. SIAM J Comput 3, 4 (Sept.).

VAN VOORHIS, D. C. 1971. On sorting networks.
Ph.D. dissertation, Computer Science Dept.,
Stanford Umv, Stanford, Calif.

VISHKIN U. 1981 Synchronized parallel computa-
tion. Ph.D. dissertation, Computer Science Dept.,
Technion--Israel Institute of Technology, Haifa,
Israel.

YASUURA, H., TAKAGI, N., AND YAJIMA, S
1982. The parallel enumeration sorting scheme
for VLSI. IEEE Trans Comput C-31, 12 (Dec.).

Received August 1982, final revision accepted August 1984

Computing Surveys, Vol 16, No. 3, September 1984

