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Data StructuresData Structures

Linked Lists
Graphs
Trees
Stacks (LIFO)
Queues (FIFO)
Heaps (Priority Queues): Support  quick insert and 
delete-max operations.
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DefinitionDefinition

A heapA heap is an almost-complete binary tree 
where every level is full except possibly the last 
one and it is completed from left to right,
each node has a key,
and the tree satisfies the following Heap Property:
The key of any child node v is ≤ the key of its 
parent p(v). That is, the keys along any path from 
a leaf to the root are ordered non-decreasingly.
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Example of a HeapExample of a Heap

5533 77 2266

44

66

338899

1010

1515

Note: Heap is not a BST



Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 5

Array RepresentationArray Representation

Every heap T can be represented by an array H[1..n]
where 
H[1] is the root
If x is a node in the heap T stored in H[i] then its 
left and right children (if exist) are stored in H[2i]
and H[2i+1], respectively.
The parent of x (if it is not the root) is stored in 
H[└ i/2 ┘].
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Example of a HeapExample of a Heap

5533 77 2266

44

66

338899

1010

1515

1 2 3 4 5 6 7 8 9 10 11 12

2 3

4 5 6 7

8 9 10 11 12

15      10       6        9        8        3       4        3  6        5       7        2

Array H

Heap T 1
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So ....So ....

If H is the array representation of the heap T, then

We will informally call H a heap.
If H is not a heap, then 

how do we make it a heap?

key( H[i] ) ≥ key( H[2i] )Key( H[└ i/2 ┘] ) ≥
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Operations on HeapsOperations on Heaps

MakeHeap[A]: makes the array A into heap, i.e., 
makes it satisfies the heap property. 
Delete_Max[H]: deletes the max element in H.
Insert[H, x]: inserts the element x into H.
Delete[H, i]: Deletes the i-th element from H.
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ProceduresProcedures

There are two procedure that we will use 
frequently within the heap operations. 

Shift-Up
Shift-Down

These procedures are used mainly for fixing (or 
restoring) the heap property when it gets damaged.
They are good for keeping the heap up-to-date 
when the values of its items are changed.
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ProcedureProcedure ShiftShift--UpUp

Suppose that key( H[i] ) has been changed to a 
greater value than key( H[└ i/2 ┘] ).
Then the key at H[i] has to be moved up or indeed 
shifted up to its proper location.
The procedure shift-up walks along the unique 
path from node H[i] to the root until it finds the 
correct position of the key( H[i] ) where it’s no 
longer larger than the key of its parent.
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ProcedureProcedure ShiftShift--UpUp
Input: Heap H[1..n] & index i in {1, 2, .., n}
Output: Heap H[1..n] where key( H[i] ) is moved up to its 

correct position.
1. done ← false;
2. if i=1 then exit; %node is the root
3. repeat
4. if key(H[i]) > key( H[└ i/2 ┘] ) then  
5. interchange H[i] & H[└ i/2 ┘] 
6. else done ← true;
7. i ← └ i/2 ┘;
8. until i=1 or done
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Procedure ShiftProcedure Shift--downdown

Suppose that key( H[i] ) (where i ≤ └ n/2 ┘) has 
been changed to a smaller value than the key of 
one of its children, i.e. smaller than 

max( key( H[2i]), key(H[2i+1])).
Then the key at H[i] has to be moved down or 
indeed shifted down to its proper location.
The procedure shift-down percolate the key of 
node H[i] down the binary tree. It always 
interchange the key of H[i] with the max key of its 
children.
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Procedure Shift-down

Notice that to shift down the key of H[i], 
we must have at least a left child of 
H[i], i.e., we must have i ≤ └ n/2 ┘, 
otherwise 2i ≥ 2(└ n/2 ┘ + 1) > n
which implies that H[i] has no left 

child!
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Procedure Shift-down
Input: Heap H[1..n] & index i in {1, 2, .., n}
Output: Heap H[1..n] where key( H[i] ) is percolated down to its correct 

position.
1. done ← false;
2. if 2i > n then exit;    %node is a leaf
3. Repeat
4. i ← 2 i;
5. if i+1 ≤ n and  key(H[i+1]) > key( H[i] ) then i ← i+1;
6. if key( H[└ i/2 ┘] )  < key(H[i])  then
7. interchange H[i] & H[└ i/2 ┘] 
8. else done ← true;
9. until 2i > n or done


