
Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 1

Chapter 4Chapter 4
HeapsHeaps

Definition of heaps
Operations on heaps
HeapSort

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 2

Data StructuresData Structures

Linked Lists
Graphs
Trees
Stacks (LIFO)
Queues (FIFO)
Heaps (Priority Queues): Support quick insert and
delete-max operations.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 3

DefinitionDefinition

A heapA heap is an almost-complete binary tree
where every level is full except possibly the last
one and it is completed from left to right,
each node has a key,
and the tree satisfies the following Heap Property:
The key of any child node v is ≤ the key of its
parent p(v). That is, the keys along any path from
a leaf to the root are ordered non-decreasingly.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 4

Example of a HeapExample of a Heap

5533 77 2266

44

66

338899

1010

1515

Note: Heap is not a BST

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 5

Array RepresentationArray Representation

Every heap T can be represented by an array H[1..n]
where
H[1] is the root
If x is a node in the heap T stored in H[i] then its
left and right children (if exist) are stored in H[2i]
and H[2i+1], respectively.
The parent of x (if it is not the root) is stored in
H[└ i/2 ┘].

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 6

Example of a HeapExample of a Heap

5533 77 2266

44

66

338899

1010

1515

1 2 3 4 5 6 7 8 9 10 11 12

2 3

4 5 6 7

8 9 10 11 12

15 10 6 9 8 3 4 3 6 5 7 2

Array H

Heap T 1

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 7

SoSo

If H is the array representation of the heap T, then

We will informally call H a heap.
If H is not a heap, then

how do we make it a heap?

key(H[i]) ≥ key(H[2i])Key(H[└ i/2 ┘]) ≥

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 8

Operations on HeapsOperations on Heaps

MakeHeap[A]: makes the array A into heap, i.e.,
makes it satisfies the heap property.
Delete_Max[H]: deletes the max element in H.
Insert[H, x]: inserts the element x into H.
Delete[H, i]: Deletes the i-th element from H.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 9

ProceduresProcedures

There are two procedure that we will use
frequently within the heap operations.

Shift-Up
Shift-Down

These procedures are used mainly for fixing (or
restoring) the heap property when it gets damaged.
They are good for keeping the heap up-to-date
when the values of its items are changed.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 10

ProcedureProcedure ShiftShift--UpUp

Suppose that key(H[i]) has been changed to a
greater value than key(H[└ i/2 ┘]).
Then the key at H[i] has to be moved up or indeed
shifted up to its proper location.
The procedure shift-up walks along the unique
path from node H[i] to the root until it finds the
correct position of the key(H[i]) where it’s no
longer larger than the key of its parent.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 11

ProcedureProcedure ShiftShift--UpUp
Input: Heap H[1..n] & index i in {1, 2, .., n}
Output: Heap H[1..n] where key(H[i]) is moved up to its

correct position.
1. done ← false;
2. if i=1 then exit; %node is the root
3. repeat
4. if key(H[i]) > key(H[└ i/2 ┘]) then
5. interchange H[i] & H[└ i/2 ┘]
6. else done ← true;
7. i ← └ i/2 ┘;
8. until i=1 or done

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 12

Procedure ShiftProcedure Shift--downdown

Suppose that key(H[i]) (where i ≤ └ n/2 ┘) has
been changed to a smaller value than the key of
one of its children, i.e. smaller than

max(key(H[2i]), key(H[2i+1])).
Then the key at H[i] has to be moved down or
indeed shifted down to its proper location.
The procedure shift-down percolate the key of
node H[i] down the binary tree. It always
interchange the key of H[i] with the max key of its
children.

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 13

Procedure Shift-down

Notice that to shift down the key of H[i],
we must have at least a left child of
H[i], i.e., we must have i ≤ └ n/2 ┘,
otherwise 2i ≥ 2(└ n/2 ┘ + 1) > n
which implies that H[i] has no left

child!

Friday, March 14, 2008 ICS 353 - Winter 2006 - E. Malalla 14

Procedure Shift-down
Input: Heap H[1..n] & index i in {1, 2, .., n}
Output: Heap H[1..n] where key(H[i]) is percolated down to its correct

position.
1. done ← false;
2. if 2i > n then exit; %node is a leaf
3. Repeat
4. i ← 2 i;
5. if i+1 ≤ n and key(H[i+1]) > key(H[i]) then i ← i+1;
6. if key(H[└ i/2 ┘]) < key(H[i]) then
7. interchange H[i] & H[└ i/2 ┘]
8. else done ← true;
9. until 2i > n or done

