Computational Complexity

1. Time Complexity
2. Space Complexity

Measuring the Performance of
algorithm

S
Two important measures
1. Time Complexity
2. Space Complexity

Running Time of Algorithm
S

= How much time the algorithm uses in terms
of input size

= # of certain operations used in the algorithm
where each operation take a constant time.
Like: multiplications, additions, comparisons,
assignments, shifts, ...etc

of seconds or minutes used by algorithm,
because this depends on machine and
technology (O.S., Prog. language, ...etc)

Input Size vs. Input Type
-

e The running time is expressed in terms of
Input size and we concentrate our analysis
on large inputs.

e Input types (arrays, lists, strings, integers,
..etc) is not an issue here.

Algorithm Running Time

e Should be machine & technology independent.
Should concentrate on the asymptotic times (large input
size).

e Should concentrate on the main largest term (order of

growth) and ignore the smaller ones.

e Sometimes we may even ighore the 15t constant
(multiplicative) factor.

e The constant factors or the other smaller terms are
important when comparing two algorithms of the same
order of running time.

e Asymptotic Notations are used to describe asymptotic
behavior of algorithm.

Examples of Running Times (RT)
S

e \Worst-case RT of Linear Search = 6(n)
e \Worst-case RT of Binary Search = 6(log n)
- Average however is still = 8(log n)

e RT of Selection Sort = n(n-1)/2 = 6(n?)
e RT of Insertion Sort = Q(n) and O(n?)
- Average however is still = 8(n?)
e RT of Bottom Up Merge Sort = 6(n log n)
e # of comparisons = RT

Complexity of Running Time
S

e Could be

e Logarithmic = 0(log n)
e Linear = 0(n)

e Quadratic = 0(n?)

e Cubic = 0(n3)

e Polynomial =0(n%) ... all are efficient.

How to compute the RT

e Ugly: by going through the code & counting
iterations and operations

e Beautiful: by doing smart abstract analysis
based on the idea of the algorithm

Space Complexity
-

e Is defined to be the extra space used by the
algorithm beside the space allocated to hold

the input

e |l.e, itis the work space used by the
algorithm measured by the number of cells or
words.

Examples
-

e Linear Search uses 0(1) (extra) space

e And so is Binary Search, ,Selection Sort, and
Insertion Sort

e Merge Sort however uses 6(n) extra space

Optimal Algorithms
S

e [hese are algorithms whose worst-case
performances meet the best-case
performance of any algorithm that solves the
same problem

e Optimal RT = min { RT of A: A algorithm
solves the problem}

Example
-

e Merge Sort is optimal among all
comparisons-based sorting algorithms,
because it uses 6(n log n).

e [heorem: Any comparisons-based sorting
algorithm uses Q(n log n) cmps.

e There are however other non-cmp-based
sorting algorithm that do better.

Worst-case vs. Average-case
.|

e Which one is better
- low worst-case with high average or

- low average with high worst-case?
e The average is the average!

Input Size =n
S

e Sorting & searching: n = # of elements in the
array

e Graphs: n, m = # of vertices & edges
e Integer Multiplications: n = # of bits
e Cryptography: n = # of bits

