
Computational Complexity

1. Time Complexity
2. Space Complexity

Measuring the Performance of
algorithm

Two important measures
1. Time Complexity
2. Space Complexity

Running Time of Algorithm

= How much time the algorithm uses in terms
of input size

= # of certain operations used in the algorithm
where each operation take a constant time.
Like: multiplications, additions, comparisons,
assignments, shifts, …etc

≠ # of seconds or minutes used by algorithm,
because this depends on machine and
technology (O.S., Prog. language, …etc)

Input Size vs. Input Type

The running time is expressed in terms of
input size and we concentrate our analysis
on large inputs.
Input types (arrays, lists, strings, integers,
..etc) is not an issue here.

Algorithm Running Time

Should be machine & technology independent.
Should concentrate on the asymptotic times (large input
size).
Should concentrate on the main largest term (order of
growth) and ignore the smaller ones.
Sometimes we may even ignore the 1st constant
(multiplicative) factor.
The constant factors or the other smaller terms are
important when comparing two algorithms of the same
order of running time.
Asymptotic Notations are used to describe asymptotic
behavior of algorithm.

Examples of Running Times (RT)

Worst-case RT of Linear Search = θ(n)
Worst-case RT of Binary Search = θ(log n)
– Average however is still = θ(log n)

RT of Selection Sort = n(n-1)/2 = θ(n2)
RT of Insertion Sort = Ω(n) and O(n2)
– Average however is still = θ(n2)

RT of Bottom Up Merge Sort = θ(n log n)
of comparisons = RT

Complexity of Running Time

Could be
Logarithmic = θ(log n)
Linear = θ(n)
Quadratic = θ(n2)
Cubic = θ(n3)
Polynomial = θ(nk) … all are efficient.

How to compute the RT

Ugly: by going through the code & counting
iterations and operations

Beautiful: by doing smart abstract analysis
based on the idea of the algorithm

Space Complexity

Is defined to be the extra space used by the
algorithm beside the space allocated to hold
the input
I.e., it is the work space used by the
algorithm measured by the number of cells or
words.

Examples

Linear Search uses θ(1) (extra) space
And so is Binary Search, ,Selection Sort, and
Insertion Sort
Merge Sort however uses θ(n) extra space

Optimal Algorithms

These are algorithms whose worst-case
performances meet the best-case
performance of any algorithm that solves the
same problem
Optimal RT = min { RT of A : A algorithm

solves the problem}

Example

Merge Sort is optimal among all
comparisons-based sorting algorithms,
because it uses θ(n log n).
Theorem: Any comparisons-based sorting
algorithm uses Ω(n log n) cmps.

There are however other non-cmp-based
sorting algorithm that do better.

Worst-case vs. Average-case

Which one is better
– low worst-case with high average or
– low average with high worst-case?

The average is the average!

Input Size = n

Sorting & searching: n = # of elements in the
array
Graphs: n, m = # of vertices & edges
Integer Multiplications: n = # of bits
Cryptography: n = # of bits

