KFUPM - ICS 353 - E. Malalla 1

Complexity Classes

Definition 1. Let’s define the following:

1. Any problem that can be solved by using a polynomial time algorithm (i.e., time=0O(n*), for some

k € N) is called tractable. Otherwise, we call it intractable.
2. A decision problem is a problem whose answer is a yes or no.
3. An optimization problem is a problem whose solution is a minimization or maximization of certain

quality.

Examples

Uniqueness Problem: Are all elements in S distinct? (D)

Are there two elements that are equal? (D)
Element Count: Find the element with the highest frequency. (O)

Coloring Problem: Is G k-colorable? (D)
Find the min & such that G is k-colorable. (O)

Clique Problem: Does G contain k-clique (complete subgraph of size k)7 (D)

Find the maximum k& such that G contains k-clique (the chromatic number of G, x(G)). (O)

Remark. If we can find an algorithm A that solves the decision-version then we can solve the optimization-

version by doing a binary search with algorithm A.

Definition 2. A deterministic algorithm is an algorithm whose steps (and hence its output) are com-

pletely determined once its input is fixed.

1 Complexity Classes

1.1 The Class P

This class consists of all problems that can be solved by a poly-time deterministic algorithm such as
sorting, searching, majority element, shortest paths, and 2-colorability. Notice that the 2-colorability is

equivalent to checking if G is bipartite or if it contains no cycles of odd lengths.

Theorem 1. The class P is closed under complement, i.e., A€ P < A°€ P.

KFUPM - ICS 353 - E. Malalla 2

1.2 The Class NP

This class consists of all problems that can be solved nondeterministically by using a poly-time deter-

ministic algorithm. This is done via two phases:
Guessing Phase: There is a procedure for guessing possible solutions in polynomial time.
Verifying Phase: There is poly-time deterministic algorithm to verify whether the guess solution is

correct or not.

Examples

3-Colorability problem: Is G 3-colorable?
Hamiltonian problem: Does the graph G contain a cycle that visit every vertex exactly once?
Traveling Salesman: Can you visit certain cities such that the total distance is k?

Vertex Cover: Find the largest subset C' C V of vertices such that for every edge (x,y) in the graph
G, the subset C' contains at least one of the vertices x and y. That is, the edge is either totally in

C or it is incident to C.

Independent Set: Find the largest subset of non-adjacent vertices. Note that if C' is cover then C€ is

independent.

3-SAT: Given a boolean formula f in conjunctive normal form C'N F where each clause consists of three

literals, for example
f=(@VaaVaz)A(xs Vi Vie) A(xa Ve Vaig).
Is f satisfiable? Can you find values for the variables that make f true.
And many others...

Theorem 2.

PCNP

The question that stays unsolved up to the time of writing is whether P = NP7 Nobody believe that

the answer of this question is yes!

KFUPM - ICS 353 - E. Malalla 3

1.3 The Class N P-Complete

This class consists of all problems II that satisfy the following:
1.ITe NP

2. I is N P-hard, that is, if Il € NP, then II Xpoly 11, that is, II can be reduced to II in polynomial
time. This means that there is a poly-time algorithm that transfer any instance of II to an instance

of II.

N P-complete problems are the hardest problems in NP class and if one can solve any N P-complete

problem then he also can solve all of the problems in NP class.

2 Dealing with N P-Completeness

There are many techniques to deal with N P-complete problems. True that we can’t solve them in

polynomial time, but we can solve them. One can do that by using the following design techniques:
1. Backtracking
2. Branch and bound
3. Approximation
4. Randomization

Backtracking and branch and bound are searching-based techniques.

3 Backtracking

One can use backtracking to solve the n-queens problem or the 3-colorability problem which we are going

to study here.

3.1 3-Colorability

Given an undirected graph G = (V, E), find a legal coloring such that no adjacent vertices have the
same color. For simplicity, say the colors are numbered 1, 2, and 3. If |V| = n then any coloring could be
written as C1, Cy, . .., C, where C; € {1,2,3} is the color of the vertex i. Clearly, there exists 3" possible
colorings represented by a ternary tree called the search tree. Each path from the root to a leaf represents

a coloring assignment. The question is how do we find the a legal coloring. We use backtracking as follows.

KFUPM - ICS 353 - E. Malalla

Algorithm 3-ColorRec
input: graph G = (V, E)
output: legal coloring C[1..n]

1. for k — 1ton do

2. C[k] <0

3: end for

4: flag «— false

5: graphColor(1)

6: if flag then output C

7: else output "no solution”

Algorithm graphColor(k)
1: for color — 1 to 3 do
2: Clk] « color
3: if C is legal coloring then
4: flag — true; exit
5. else if C is partial coloring then
6: graphColor(k + 1)
7. end if

8: end for

KFUPM - ICS 353 - E. Malalla 5

Here is also the iterative version of this algorithm.

Algorithm 3-Colorlter
input: graph G = (V, E)
output: legal coloring C[1..n]

1: for kK +—1ton do

2. Clk] <0

3: end for

4: flag « false; k — 1

5. while £ > 1 do

6: while C[k] <2 do

7: Clk] < C[k] + 1

8: if C is legal coloring then

9: flag « true

10: exit (from the two while loops)
11: else if C is partial coloring then
12: ke—k+1 % advance
13: end if

14: end while

15 Clk] <0

16: k—k—-1 % backtrack
17: end while

18: if flag then output C'

19: else output ”"no solution”

The worst-case running time of this backtracking algorithm is clearly O(n3™). Notice that at each
step we need to check the legality of the coloring by checking the correct coloring of each vertex in O(n)

time.

KFUPM - ICS 353 - E. Malalla 6

Example

Let us use the backtracking algorithm to find a legal 3-coloring for the following graph (if such exists).

We draw the search tree followed by the algorithm and we assume that the three colors are named R, G

4 =

and B for red, green and blue.

