Complexity Classes

Definition 1. Let's define the following:

- 1. Any problem that can be solved by using a polynomial time algorithm (i.e., time= $O(n^k)$), for some $k \in \mathbb{N}$) is called tractable. Otherwise, we call it intractable.
- 2. A decision problem is a problem whose answer is a yes or no.
- 3. An optimization problem is a problem whose solution is a minimization or maximization of certain quality.

Examples

- **Uniqueness Problem:** Are all elements in S distinct? (D) Are there two elements that are equal? (D)
- Element Count: Find the element with the highest frequency. (O)

Coloring Problem: Is G k-colorable? (D)

Find the min k such that G is k-colorable. (O)

Clique Problem: Does G contain k-clique (complete subgraph of size k)? (D) Find the maximum k such that G contains k-clique (the chromatic number of G, $\chi(G)$). (O)

Remark. If we can find an algorithm A that solves the decision-version then we can solve the optimization-version by doing a binary search with algorithm A.

Definition 2. A deterministic algorithm is an algorithm whose steps (and hence its output) are completely determined once its input is fixed.

1 Complexity Classes

1.1 The Class *P*

This class consists of all problems that can be solved by a poly-time deterministic algorithm such as sorting, searching, majority element, shortest paths, and 2-colorability. Notice that the 2-colorability is equivalent to checking if G is bipartite or if it contains no cycles of odd lengths.

Theorem 1. The class P is closed under complement, i.e., $A \in P \iff A^c \in P$.

1.2 The Class NP

This class consists of all problems that can be solved nondeterministically by using a poly-time deterministic algorithm. This is done via two phases:

Guessing Phase: There is a procedure for guessing possible solutions in polynomial time.

Verifying Phase: There is poly-time deterministic algorithm to verify whether the guess solution is correct or not.

Examples

3-Colorability problem: Is G 3-colorable?

Hamiltonian problem: Does the graph G contain a cycle that visit every vertex exactly once?

Traveling Salesman: Can you visit certain cities such that the total distance is k?

- Vertex Cover: Find the largest subset $C \subset V$ of vertices such that for every edge (x, y) in the graph G, the subset C contains at least one of the vertices x and y. That is, the edge is either totally in C or it is incident to C.
- **Independent Set:** Find the largest subset of non-adjacent vertices. Note that if C is cover then C^c is independent.
- **3-SAT:** Given a boolean formula f in conjunctive normal form CNF where each clause consists of three literals, for example

$$f = (x_1 \lor x_2 \lor \bar{x_3}) \land (x_3 \lor \bar{x_1} \lor \bar{x_2}) \land (x_2 \lor x_2 \lor \bar{x_1}).$$

Is f satisfiable? Can you find values for the variables that make f true.

And many others...

Theorem 2.

$$P \subseteq NP$$

The question that stays unsolved up to the time of writing is whether P = NP? Nobody believe that the answer of this question is yes!

1.3 The Class *NP*-Complete

This class consists of all problems Π that satisfy the following:

- 1. $\Pi \in NP$
- 2. Π is *NP*-hard, that is, if $\widetilde{\Pi} \in NP$, then $\widetilde{\Pi} \propto_{\text{poly}} \Pi$, that is, $\widetilde{\Pi}$ can be reduced to Π in polynomial time. This means that there is a poly-time algorithm that transfer any instance of $\widetilde{\Pi}$ to an instance of Π .

NP-complete problems are the hardest problems in NP class and if one can solve any NP-complete problem then he also can solve all of the problems in NP class.

2 Dealing with *NP*-Completeness

There are many techniques to deal with NP-complete problems. True that we can't solve them in polynomial time, but we can solve them. One can do that by using the following design techniques:

- 1. Backtracking
- 2. Branch and bound
- 3. Approximation
- 4. Randomization

Backtracking and branch and bound are searching-based techniques.

3 Backtracking

One can use backtracking to solve the *n*-queens problem or the 3-colorability problem which we are going to study here.

3.1 3-Colorability

Given an undirected graph G = (V, E), find a **legal coloring** such that no adjacent vertices have the same color. For simplicity, say the colors are numbered 1, 2, and 3. If |V| = n then any coloring could be written as C_1, C_2, \ldots, C_n where $C_i \in \{1, 2, 3\}$ is the color of the vertex *i*. Clearly, there exists 3^n possible colorings represented by a ternary tree called the search tree. Each path from the root to a leaf represents a coloring assignment. The question is how do we find the a legal coloring. We use backtracking as follows.

Algorithm 3-ColorRec

 $\underline{\text{input: graph } G = (V, E) }$ $\underline{\text{output: legal coloring } C[1..n] }$

- 1: for $k \leftarrow 1$ to n do
- 2: $C[k] \leftarrow 0$
- 3: end for
- $4:\ flag \leftarrow false$
- 5: graphColor(1)
- 6: if flag then output C
- 7: else output "no solution"

Algorithm graphColor(k)

- 1: for $color \leftarrow 1$ to 3 do
- 2: $C[k] \leftarrow color$
- 3: **if** C is legal coloring **then**
- 4: $flag \leftarrow true; exit$
- 5: **else if** C is partial coloring **then**
- 6: graphColor(k+1)
- 7: end if
- 8: end for

Here is also the iterative version of this algorithm.

Algorithm 3-ColorIter

input: graph G = (V, E)output: legal coloring C[1..n]1: for $k \leftarrow 1$ to n do 2: $C[k] \leftarrow 0$ 3: end for 4: $flag \leftarrow false; k \leftarrow 1$ 5: while $k \ge 1$ do while $C[k] \leq 2$ do 6: $C[k] \gets C[k] + 1$ 7:if C is legal coloring then 8: $flag \leftarrow true$ 9: 10: exit (from the two while loops) else if ${\rm C}$ is partial coloring then 11: $k \gets k+1$ % advance 12:end if 13:end while 14: $C[k] \leftarrow 0$ 15: $k \leftarrow k - 1$ % backtrack 16:17: end while 18: if flag then output C 19: **else** output "no solution"

The worst-case running time of this backtracking algorithm is clearly $O(n3^n)$. Notice that at each step we need to check the legality of the coloring by checking the correct coloring of each vertex in O(n)time.

Example

Let us use the backtracking algorithm to find a legal 3-coloring for the following graph (if such exists). We draw the search tree followed by the algorithm and we assume that the three colors are named R, G and B for red, green and blue.

