Complexity Classes

Definition 1. Let's define the following:

1. Any problem that can be solved by using a polynomial time algorithm (i.e., time $=O\left(n^{k}\right)$, for some $k \in \mathbb{N}$) is called tractable. Otherwise, we call it intractable.
2. A decision problem is a problem whose answer is a yes or no.
3. An optimization problem is a problem whose solution is a minimization or maximization of certain quality.

Examples

Uniqueness Problem: Are all elements in S distinct? (D)
Are there two elements that are equal? (D)
Element Count: Find the element with the highest frequency. (O)

Coloring Problem: Is $G k$-colorable? (D)
Find the min k such that G is k-colorable. (O)

Clique Problem: Does G contain k-clique (complete subgraph of size k)? (D)
Find the maximum k such that G contains k-clique (the chromatic number of $G, \chi(G)$). (O)

Remark. If we can find an algorithm A that solves the decision-version then we can solve the optimizationversion by doing a binary search with algorithm A.

Definition 2. A deterministic algorithm is an algorithm whose steps (and hence its output) are completely determined once its input is fixed.

1 Complexity Classes

1.1 The Class P

This class consists of all problems that can be solved by a poly-time deterministic algorithm such as sorting, searching, majority element, shortest paths, and 2-colorability. Notice that the 2-colorability is equivalent to checking if G is bipartite or if it contains no cycles of odd lengths.

Theorem 1. The class P is closed under complement, i.e., $A \in P \Longleftrightarrow A^{c} \in P$.

1.2 The Class NP

This class consists of all problems that can be solved nondeterministically by using a poly-time deterministic algorithm. This is done via two phases:

Guessing Phase: There is a procedure for guessing possible solutions in polynomial time.

Verifying Phase: There is poly-time deterministic algorithm to verify whether the guess solution is correct or not.

Examples

3-Colorability problem: Is $G 3$-colorable?

Hamiltonian problem: Does the graph G contain a cycle that visit every vertex exactly once?

Traveling Salesman: Can you visit certain cities such that the total distance is k ?

Vertex Cover: Find the largest subset $C \subset V$ of vertices such that for every edge (x, y) in the graph G, the subset C contains at least one of the vertices x and y. That is, the edge is either totally in C or it is incident to C.

Independent Set: Find the largest subset of non-adjacent vertices. Note that if C is cover then C^{c} is independent.

3-SAT: Given a boolean formula f in conjunctive normal form $C N F$ where each clause consists of three literals, for example

$$
f=\left(x_{1} \vee x_{2} \vee \overline{x_{3}}\right) \wedge\left(x_{3} \vee \overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(x_{2} \vee x_{2} \vee \overline{x_{1}}\right)
$$

Is f satisfiable? Can you find values for the variables that make f true.

And many others...

Theorem 2.

$$
P \subseteq N P
$$

The question that stays unsolved up to the time of writing is whether $P=N P$? Nobody believe that the answer of this question is yes!

1.3 The Class NP-Complete

This class consists of all problems Π that satisfy the following:

1. $\Pi \in N P$
2. Π is $N P$-hard, that is, if $\widetilde{\Pi} \in N P$, then $\widetilde{\Pi} \propto_{\text {poly }} \Pi$, that is, $\widetilde{\Pi}$ can be reduced to Π in polynomial time. This means that there is a poly-time algorithm that transfer any instance of $\widetilde{\Pi}$ to an instance of Π.
$N P$-complete problems are the hardest problems in $N P$ class and if one can solve any $N P$-complete problem then he also can solve all of the problems in $N P$ class.

2 Dealing with $N P$-Completeness

There are many techniques to deal with $N P$-complete problems. True that we can't solve them in polynomial time, but we can solve them. One can do that by using the following design techniques:

1. Backtracking
2. Branch and bound
3. Approximation
4. Randomization

Backtracking and branch and bound are searching-based techniques.

3 Backtracking

One can use backtracking to solve the n-queens problem or the 3 -colorability problem which we are going to study here.

3.1 3-Colorability

Given an undirected graph $G=(V, E)$, find a legal coloring such that no adjacent vertices have the same color. For simplicity, say the colors are numbered 1,2 , and 3 . If $|V|=n$ then any coloring could be written as $C_{1}, C_{2}, \ldots, C_{n}$ where $C_{i} \in\{1,2,3\}$ is the color of the vertex i. Clearly, there exists 3^{n} possible colorings represented by a ternary tree called the search tree. Each path from the root to a leaf represents a coloring assignment. The question is how do we find the a legal coloring. We use backtracking as follows.

Algorithm 3-ColorRec

input: graph $G=(V, E)$
output: legal coloring $C[1 . . n]$
1: for $k \leftarrow 1$ to n do
$C[k] \leftarrow 0$
end for
4: flag \leftarrow false
5: graphColor(1)
6: if flag then output C
7: else output "no solution"

Algorithm graphColor (k)

for color $\leftarrow 1$ to 3 do $C[k] \leftarrow$ color if C is legal coloring then flag \leftarrow true; exit else if C is partial coloring then $\operatorname{graphColor}(k+1)$ end if end for

Here is also the iterative version of this algorithm.

Algorithm 3-ColorIter

```
input: graph \(G=(V, E)\)
output: legal coloring \(C[1 . . n]\)
    for \(k \leftarrow 1\) to \(n\) do
        \(C[k] \leftarrow 0\)
    end for
    flag \(\leftarrow\) false \(; k \leftarrow 1\)
    while \(k \geq 1\) do
        while \(C[k] \leq 2\) do
        \(C[k] \leftarrow C[k]+1\)
        if \(C\) is legal coloring then
            flag \(\leftarrow\) true
            exit (from the two while loops)
        else if C is partial coloring then
            \(k \leftarrow k+1 \quad \%\) advance
        end if
        end while
        \(C[k] \leftarrow 0\)
        \(k \leftarrow k-1 \quad\) \% backtrack
    end while
    if flag then output \(C\)
    else output "no solution"
```

The worst-case running time of this backtracking algorithm is clearly $O\left(n 3^{n}\right)$. Notice that at each step we need to check the legality of the coloring by checking the correct coloring of each vertex in $O(n)$ time.

Example

Let us use the backtracking algorithm to find a legal 3 -coloring for the following graph (if such exists). We draw the search tree followed by the algorithm and we assume that the three colors are named R, G and B for red, green and blue.

