Dijkstra's Algorithm

Algorithm Dijkstra

input: A weighted directed graph $G=(V, E)$
output: Distances array $\lambda[1 . . n]$ where $\lambda[y]$ is the distance from 1 to y.
$: X \leftarrow\{1\} ; Y \leftarrow V-\{1\} ; \lambda[1] \leftarrow 0 ;$
for $y \leftarrow 2$ to n do
if y is adjacent to 1 then
$\lambda[y] \leftarrow$ length $[1, y]$
else
$\lambda[y] \leftarrow \infty$
end if
end for
for $j \leftarrow 1$ to $n-1$ do
let $y \in Y$ be the vertex with the $\min \lambda$
$X \leftarrow X \cup\{y\} ; Y \leftarrow Y-\{y\}$
for each edge (y, w) do
$z \leftarrow \lambda[y]+$ length $[y, w]$
if $w \in Y$ and $z<\lambda[w]$ then $\lambda[w] \leftarrow z$
end for
end for

Remarks

1. Running Time $=\Theta\left(m+n^{2}\right)=\Theta\left(n^{2}\right)$ where $m=|E|$. This is because finding the $\min _{y \in Y} \lambda[y]$ costs $\Theta\left(n^{2}\right)$ in total. Extra space $=\Theta(n)$..why?
2. Implementation: The graph G can be saved as adjacency list which costs $\Theta(m+n)$ space. For the sets X and Y we can use only one binary array $X[1 . . n]$ where initially $X=\left[\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & \ldots\end{array}\right]$. The operation $X \leftarrow X\{y\}$ can be implemented by setting $X[y]=1$. The set Y can be obtained from X as it has the opposite content.
3. Improving Dijkstra's: The running time can be improved if $m=o\left(n^{2}\right)$ by using min-heap to maintain the values $\lambda[y]$ and extract the min in constant time. Updating the heap takes $O(\log n)$ and there could be at most m updates (because when a y is moved to X, the λ-values of its neighbors in Y have to be updated.)
