Dijkstra's Algorithm

Algorithm Dijkstra

input: A weighted directed graph G = (V, E)

output: Distances array $\lambda[1..n]$ where $\lambda[y]$ is the distance from 1 to y.

```
1: X \leftarrow \{1\}; Y \leftarrow V - \{1\}; \lambda[1] \leftarrow 0;
```

- 2: for $y \leftarrow 2$ to n do
- 3: **if** y is adjacent to 1 **then**
- 4: $\lambda[y] \leftarrow length[1, y]$
- 5: **else**
- 6: $\lambda[y] \leftarrow \infty$
- 7: end if
- 8: end for
- 9: for $j \leftarrow 1$ to n 1 do
- 10: let $y \in Y$ be the vertex with the min λ

11:
$$X \leftarrow X \cup \{y\}; Y \leftarrow Y - \{y\}$$

- 12: for each edge (y, w) do
- 13: $z \leftarrow \lambda[y] + length[y, w]$
- 14: **if** $w \in Y$ and $z < \lambda[w]$ **then** $\lambda[w] \leftarrow z$
- 15: **end for**
- 16: **end for**

Remarks

- 1. Running Time = $\Theta(m + n^2) = \Theta(n^2)$ where m = |E|. This is because finding the $\min_{y \in Y} \lambda[y]$ costs $\Theta(n^2)$ in total. Extra space = $\Theta(n)$...why?
- Implementation: The graph G can be saved as adjacency list which costs Θ(m + n) space. For the sets X and Y we can use only one binary array X[1..n] where initially X =[1 0 0 0 0 0 ... 0]. The operation X ← X {y} can be implemented by setting X[y] = 1. The set Y can be obtained from X as it has the opposite content.
- 3. Improving Dijkstra's: The running time can be improved if $m = o(n^2)$ by using min-heap to maintain the values $\lambda[y]$ and extract the min in constant time. Updating the heap takes $O(\log n)$ and there could be at most m updates (because when a y is moved to X, the λ -values of its neighbors in Y have to be updated.)