
KFUPM - ICS 353 - E. Malalla 1

Dijkstra’s Algorithm

Algorithm Dijkstra

input: A weighted directed graph G = (V, E)

output: Distances array λ[1..n] where λ[y] is the distance from 1 to y.

1: X ← {1}; Y ← V − {1}; λ[1]← 0;

2: for y ← 2 to n do

3: if y is adjacent to 1 then

4: λ[y]← length[1, y]

5: else

6: λ[y]←∞
7: end if

8: end for

9: for j ← 1 to n− 1 do

10: let y ∈ Y be the vertex with the min λ

11: X ← X ∪ {y}; Y ← Y − {y}
12: for each edge (y, w) do

13: z ← λ[y] + length[y, w]

14: if w ∈ Y and z < λ[w] then λ[w]← z

15: end for

16: end for

KFUPM - ICS 353 - E. Malalla 2

Remarks

1. Running Time = Θ(m + n2) = Θ(n2) where m = |E|. This is because finding the miny∈Y λ[y]

costs Θ(n2) in total. Extra space = Θ(n) ..why?

2. Implementation: The graph G can be saved as adjacency list which costs Θ(m + n) space. For

the sets X and Y we can use only one binary array X [1..n] where initially X =[1 0 0 0 0 0 ... 0].

The operation X ← X {y} can be implemented by setting X [y] = 1. The set Y can be obtained

from X as it has the opposite content.

3. Improving Dijkstra’s: The running time can be improved if m = o(n2) by using min-heap to

maintain the values λ[y] and extract the min in constant time. Updating the heap takes O(log n)

and there could be at most m updates (because when a y is moved to X , the λ-values of its neighbors

in Y have to be updated.)

