
KFUPM - ICS 353 - E. Malalla 1

ICS 353–Design and Analysis of Algorithms

Asymptotic Notations

Landau symbols

The following asymptotic notations are sometimes called Landau symbols. It is not difficult to see that

these notations are very useful for comparing the performances of algorithms with respect to the consumed

time and space. That is, they are used to describe the complexity classes of algorithms. We will use

mainly the following five symbols.

Definition 1. Let f(n) and g(n) be any two functions mapping N→ (0,∞). Then

1. Big-Oh: f(n) = O(g(n)) if and only if there is n1 ∈ N and a constant c1 > 0 such that

f(n) ≤ c1g(n), for all n ≥ n1 .

2. Big-Omega: f(n) = Ω(g(n)) if and only if there is n2 ∈ N and a constant c2 > 0 such that

f(n) ≥ c2g(n), for all n ≥ n2 .

3. Theta: f(n) = Θ(g(n)) if and only if there is n0 ∈ N and two constants c1, c2 > 0 such that

c1g(n) ≤ f(n) ≤ c2g(n), for all n ≥ n0 .

4. Small-oh: f(n) = o(g(n)) if and only if

lim
n→∞

f(n)
g(n)

= 0 .

5. Small-omega: f(n) = ω(g(n)) if and only if

lim
n→∞

g(n)
f(n)

= 0 .

Remarks

Notice the following.

1. The Big Oh is an upper bound of a function. We will regularly use it to bound the worst-case (or

the maximum) running time from above.

2. On the other hand, the Big Omega is a lower bound of a function. Usually we use it to obtain a

lower bound on the best-case (or the minimum) running time of the algorithm.



KFUPM - ICS 353 - E. Malalla 2

3. The Theta combines both symbols the Big-Oh and the Big-Omega. Notice that if f(n) = Θ(g(n))

then f(n) = O(g(n)) and f(n) = Ω(g(n)) at the same time. This means both functions are of the

same order; in fact they both have the same main term but possibly with different multiplicative

constants. For example, if f(n) = 3n2−3n+1 and g(n) = 5n2+6n−4 then f(n) = Θ(g(n)) = Θ(n2).

One way to check that is to make sure that the limit lim
n→∞

f(n)
g(n) exists and it is a constant:

lim
n→∞

f(n)
g(n)

= lim
n→∞

3n2 − 3n + 1
5n2 + 6n− 4

= lim
n→∞

3− 3/n + 1/n2

5 + 6/n− 4/n2
=

3
5

.

4. The small-oh says that g(n) is much bigger than f(n) to the degree that g(n) goes to infinity faster

than f(n), as n →∞.

5. The small-omega says that g(n) is much smaller than f(n) to the degree that f(n) goes to infinity

faster than g(n), as n →∞.

6. In all of these cases, we only need to prove these statements for n large enough (i.e., for n ≥ n0).

That’s why it is called asymptotic notations.

7. The constants c1 and c2 are all hidden within the notations because they are not important at this

stage. Suppose for example we know that the running time of a given algorithm is O(n2) (as in

InsertionSort algorithm). Say we run the algorithm with n = 1000, and we find that it takes 4

seconds. If we want to find the time for n = 106, we don’t have to run the algorithm over again.

Since the time grows quadratically in this case, the estimated time for the problem should be close

to (1000)2 × 4 seconds, or 4 million seconds. Had this algorithm been linear O(n), the time would

have been 1000×4 or 4000 seconds only! In both of these cases (quadratic and linear), the constant

c was not needed.

8. Thus, when we analyze the performance of algorithms we should make our analysis independent

from the type of machine and technology. Thus,

• We should concentrate on the asymptotic performances (for large input size n),

• We should concentrate on the main term and ignore the smaller ones and the constant factors,

• The constant factors and other smaller terms are useful only to compare between two algo-

rithms that have the same order of running time.

Examples

1. Let f(n) = 35n and g(n) = 2n + 3. Then f(n) = Θ(g(n)) because 1× g(n) ≤ f(n) ≤ 20× g(n), for

all n ≥ 1.



KFUPM - ICS 353 - E. Malalla 3

2. Similarly, for any constants a > 0 and b we have f(n) = an + b = Θ(n). Notice also that

f(n) = O(n2) = O(n3) = O(nk) for any k > 1 because an + b ≤ (a + b)nk, for any k > 1

and n ≥ 1.

3. If f(n) = 5n2 − 6n + 3 and g(n) = 2n + 8, then f(n) = ω(g(n)) and g(n) = o(f(n)) because

lim
n→∞

g(n)
f(n)

= lim
n→∞

2n + 8
5n2 − 6n + 3

= lim
n→∞

2 + 8/n

5n− 6 + 3/n
= 0 .

4. Clearly, log n = O(n) and n = Ω(log n). In fact, log n = o(n) and n = ω(log n) because by

L’Höpital’s rule

lim
n→∞

log n

n
= 0 .

In fact, if c ∈ (0, 1) is any constant than log n = o(nc) by applying the same rule.

5. Notice also that if k is any positive constant then log nk = k log n = o(n) and n + log nk = Θ(n)

because n ≤ n + k log n ≤ 2kn.

6. Similarly, n +
√

n log n = Θ(n) because log n ≤ √
n and hence n ≤ n +

√
n log n ≤ 2n.

7. Clearly, for any constant c we have n = ω(nc) = ω(log n) = ω(log log n) = ω(1).

8. For any constant c > 0, we have cn = O(n!) = O(nn) and log n! = Θ(n log n). See also Examples

1.12- 1.14 in the textbook.

9. We also use the notation f(n) ≺ g(n) to mean that f(n) = o(g(n)); that is the two functions are of

different complexity classes. For example,

1 ≺ log∗ n ≺ log log n ≺
√

log n ≺ log n

log log n
≺ log n ≺ √

n ≺ n ≺ n log n ≺ n2 ≺ en ≺ n! ≺ nn .

10. Notice that if the running time of some algorithm is Tn = Θ(n), then the main term of Tn is cn

for some constant c > 0 and all other terms in Tn are o(n). For example, Tn could be one of the

following.

• Tn = n/2− log n

• Tn = 5n + 2
√

n− n5/7 log n

• Tn = 7n5−3n3+2n
4n4+

√
n−log n

= n5(7−3/n2+2/n4)
n4(4+1/n7/2−(log n)/n4)


