Proof Methods \& strategies

Section 1.7

Proof by Cases

- We use the rule of inference

$$
\begin{aligned}
& P_{1} \vee P_{2} \vee \ldots \vee P_{n} \rightarrow q \\
& \quad \equiv\left(P_{1} \rightarrow q\right) \wedge\left(P_{2} \rightarrow q\right) \wedge \ldots \wedge\left(P_{n} \rightarrow q\right)
\end{aligned}
$$

Exhaustive Proof

A special type of proof by cases where each case can be checked by examining an example.

- Good for computers.

Examples

$(n+1)^{3} \geq 3^{n}$, for $n=1,2,3,4$
Proof: (Exhaustive)

- For $n=1, \quad 2^{3}=8 \geq 3$
- For $n=2, \quad 3^{3}=27 \geq 3^{2}=9$
- For $n=3, \quad 4^{3}=64 \geq 3^{3}=27$
- For $n=4, \quad 5^{3}=125 \geq 3^{4}=81$

Examples

The only consecutive positive integers <100 that are perfect powers are 8 and 9
Proof:

- Perfect squares < 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81
- Perfect cubes <100 are 1, 8, 27, 64
- Perfect $4^{\text {th }}$ powers <100 are 1, 16, 81
- Perfect $5^{\text {th }}$ powers <100 are 1, 32
- Perfect $6^{\text {th }}$ powers <100 are 1, 64
- So all perfect powers < 100 are $1,4,8,9,16,25,27,32,36,49,64,81$
- So the consecutive perfect powers are 8 \& 9

Examples

$n^{2} \geq n$ for all integers.
Proof:

- Case I: when $\mathrm{n}=0$, then $\mathrm{n}^{2}=0 \geq \mathrm{n}=0$
- Case II: when $n \geq 1$, then

$$
n^{2}=n \times n \geq n \times 1=n
$$

- Case III: when $\mathrm{n} \leq-1$, then

$$
n^{2} \geq 0 \geq-1 \geq n
$$

Examples

$\forall x, y \in R,|x y|=|x||y|$
Proof:

- Case I: $x \geq 0 \& y \geq 0$, then

$$
|x y|=x y=|x||y|
$$

- Case II: $x \geq 0 \& y<0$, then

$$
|x y|=-x y=x(-y)=|x||y|
$$

- Case III: $x<0 \& y \geq 0$, then same as II
- Case IV: $x<0 \& y<0$, then

$$
|x y|=x y=(-x)(-y)=|x||y|
$$

Common Error

- Not all cases are considered.
- Example: if $x \in R$, then $x^{2}>0$
- Case I: $x>0$, then ..
- Case II: $\mathrm{x}<0$, then ..
- But Case III is forgotten!

Uniqueness Proof

Existence first, then uniqueness
$\exists!\times P(x)$

$$
\equiv \exists x(P(x) \wedge \forall y \quad(y \neq x \rightarrow \neg P(y)))
$$

Example

If $a, b \in R \& a \neq 0$, then

$$
\exists!r \in R \text { s.t. } a r+b=0
$$

Proof:

- Clearly $\mathrm{r}=-\mathrm{b} / \mathrm{a} \quad$ (existence)
- Suppose $a s+b=0$, then $a r+b=a s+b$, i.e. $a s=a b$, and hence $s=r$ because $a \neq 0$.

