Proof Methods & strategies

Section 1.7

Proof by Cases

We use the rule of inference

$P_1 \lor P_2 \lor \ldots \lor P_n \to q$ = (P_1 \to q) \langle (P_2 \to q) \langle ... \langle (P_n \to q)

Exhaustive Proof

 A special type of proof by cases where each case can be checked by examining an example.

Good for computers.

 $(n+1)^3 \ge 3^n$, for n=1, 2, 3, 4 Proof: (Exhaustive)

- For n=1, $2^3 = 8 \ge 3$
- For n=2, $3^3 = 27 \ge 3^2 = 9$
- For n=3, $4^3 = 64 \ge 3^3 = 27$
- For n=4, $5^3 = 125 \ge 3^4 = 81$

- The only consecutive positive integers < 100 that are perfect powers are 8 and 9 Proof:
- Perfect squares < 100 are 1, 4, 9, 16, 25, 36, 49, 64, 81
- Perfect cubes < 100 are 1, 8, 27, 64
- Perfect 4th powers < 100 are 1, 16, 81
- Perfect 5th powers < 100 are 1, 32
- Perfect 6th powers < 100 are 1, 64
- So all perfect powers < 100 are
 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81
- So the consecutive perfect powers are 8 & 9

- $n^2 \ge n$ for all integers. **Proof**:
- Case I: when n=0, then $n^2=0 \ge n = 0$
- Case II: when n ≥ 1, then n²=n x n ≥ n x 1 =n
 Case III: when n ≤ -1, then n² ≥ 0 ≥ -1 ≥ n

$$\forall x, y \in R, |x y| = |x| |y|$$

Proof:

Case IV:
$$x < 0 \& y < 0$$
, then
 $|x y| = x y = (-x) (-y) = |x| |y|$

Common Error

- Not all cases are considered.
- Example: if $x \in R$, then $x^2 > 0$
- Case I: x > o, then ..
- Case II: x < 0, then ...

But Case III is forgotten!

Uniqueness Proof

Existence first, then uniqueness

 $\exists ! x P(x) \\ \equiv \exists x (P(x) \land \forall y (y \neq x \rightarrow \neg P(y)))$

If a, $b \in \mathbb{R}$ & $a \neq 0$, then $\exists ! r \in \mathbb{R}$ s.t. a r + b = 0

Proof:

- Clearly r=-b/a (existence)
- Suppose as+b =0, then ar+b=as+b,
 i.e. as = ab, and hence s=r because a ≠0.