Introduction to Proofs

Section 1.6

Definition

- Proof: is a valid argument that establishes the truth of a mathematical statement.
- It may use axioms, hypothesis, rules of inference, other propositions (facts), lemmas, corollaries, \& theorems.

Formal
Long
Difficult to
construct
\& read

Informal
Short
Easy to
construct
\& read

Definitions

- Axioms (postulates) are statements that can be assumed to be true.
- Theorem: is a statement that can be proven to be true.
- Conjecture: is a statement that one believe it is true, but has not been proven yet.
- Less Important theorems are called - Proposition
- Lemma: if used to prove other theorems
- Corollary: if concluded from a theorem

Remark

- Mathematicians usually don't use universal quantifiers (or universal instantiation or generalization) explicitly.

Example

- $\forall \mathrm{x} \quad(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$ will be written as

If $P(x)$, then $Q(x)$ where x belongs to its domain.

- When we try to prove it, we should show that $\mathrm{P}(\mathrm{c}) \rightarrow \mathrm{Q}(\mathrm{c})$ for arbitrary c in the domain.

Proof Techniques

1. Direct Proofs
2. Indirect Proofs
3. Proof by contraposition
4. Proof by contradiction

Direct Proofs

- For: "p \rightarrow q" Or $\quad \forall x(P(x) \rightarrow Q(x))$

To prove such statements

- assume that p (or P(c)) is true
- use all possible facts, lemmas, theorems, and rules of inferences
- and try to show that q (or $\mathrm{Q}(\mathrm{c})$) is true.

Definition

1. $n \in Z$ is even $\leftrightarrow \exists k \in Z$ s.t. $n=2 k$
2. $n \in Z$ is odd $\leftrightarrow \exists k \in Z$ s.t. $n=2 k+1$
3. $n \in Z$ is a perfect square $\leftrightarrow n=k^{2}$ for some $k \in Z$.

Note: $\mathrm{n} \in \mathrm{Z} \rightarrow \mathrm{n}$ is even $\oplus \mathrm{n}$ is odd

Theorem

If $n \in Z$ is odd, then n^{2} is odd,
i.e., $\quad \forall \mathrm{n} \in \mathrm{Z}$ (n is odd $\rightarrow \mathrm{n}^{2}$ is odd)

Proof. (Direct)

- Assume that $n \in Z$ is odd, then by definition $\exists \mathrm{k} \in \mathrm{Z}$ s.t. $\mathrm{n}=2 \mathrm{k}+1$
- Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$

$$
=2\left(2 k^{2}+2 k\right)+1=2 m+1
$$

And so n^{2} is odd.

Theorem

If $n, m \in Z$ are perfect squares, then $n m$ is also a perfect square.

Proof. (direct)

- Let n, m be perfect squares.
- Then $n=k^{2}$ and $m=l^{2}$ for some $k, I \in Z$.
- Then $n m=k^{2} I^{2}=(k l)^{2}$.
- And so nm is a perfect square.

I ndirect Proofs.

Proof by contraposition:

- Note that $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- So to prove $p \rightarrow q$ we need to assume $\neg q$ and try to prove $\neg p$

Examples

1. If $n \in Z$ and $3 n+2$ is odd, then n is odd Proof. (by contraposition)

- Assume that n is even
- Then $\mathrm{n}=2 \mathrm{k}$ for some integer k
- So $3 n+2=6 k+2=2(3 k+1)=2 m$
- Thus $3 n+2$ is even

Examples

2. If $\mathrm{n}=\mathrm{a} \mathrm{b}$ where a \& b are positive integers, then

$$
a \leq \operatorname{sqrt}(n) \quad \text { or } \quad b \leq \operatorname{sqrt}(n)
$$

Proof. (by contraposition)

- assume a > sqrt(n) \& b > sqrt(n) Then $a b>n$, i.e., $a b \neq n$

Vacuous \& Trivial Proofs

Consider p \rightarrow q

- Vacuous Proof: if p is false then the statement is always true.
- Trivial Proof: if q is true then the statement is always true.

Examples

- If $0>1$, then $n^{2}>n$ for any integer n. (vacuous)
- If $a>b$, then $a^{2} \geq 0$.
(trivial)

Definition

- Any real number r is rational iff there are two integers n and m s.t. $\mathrm{m} \neq 0$ and $r=n / m$.
- r is irrational iff it is not rational.
- We write Q for the set of all rational.

Theorem

$\forall \mathrm{x}, \mathrm{y} \in \mathrm{Q}, \mathrm{x}+\mathrm{y} \in \mathrm{Q}$
Or $\forall x, y \in R(x, y \in Q \rightarrow x+y \in Q)$
Proof. (direct)

- Let $x, y \in Q$.
- Then $x=n_{1} / m_{1}$ and $y=n_{2} / m_{2}$, and $m_{1} \neq 0 \neq m_{2}$
- Then $x+y=n_{1} / m_{1}+n_{2} / m_{2}$

$$
=\left(n_{1} m_{2}+n_{2} m_{1}\right) /\left(m_{1} m_{2}\right)
$$

- So $x+y \in Q$

Theorem

If $n \in Z$ and n^{2} is odd, then n is odd Proof
Direct: $n^{2}=2 k+1$, and so $\mathrm{n}=\operatorname{sqrt}(2 \mathrm{k}+1)$, and then \ldots ???

Contraposition:
n is even $\rightarrow \mathrm{n}=2 \mathrm{k} \rightarrow \mathrm{n}^{2}=4 \mathrm{k}^{2}=2\left(2 \mathrm{k}^{2}\right)$
$\rightarrow n^{2}$ is even

Proofs by contradiction

- To prove that p is true, we show that $\neg p$ leads to some kind of a contradiction $=F$ proposition like $(r \wedge \neg r)=F$.
- To prove that $p \rightarrow q$ by contradiction, we assume that p is true \& q is false and try to get a contradiction, i.e., $(p \wedge \neg q) \rightarrow F$.

Example

Sqrt(2) is irrational.
Proof. (by contradiction)

- Assume not, i.e., sqrt(2) $=$ n/m for some integers n and $\mathrm{m} \neq 0$.
- We can assume that n and m have no common factors.
- Then $2=n^{2} / m^{2}$, or indeed $2 \mathrm{~m}^{2}=\mathrm{n}^{2}$
- Which means that n^{2} is even
- So n is even (by theorem)

Continue ..

- So $n=2 k$ and hence $n^{2}=4 k^{2}=2 \mathrm{~m}^{2}$
- Or $2 k^{2}=m^{2}$, and so m^{2} is even
- This means that both n and m are even,
- i.e., they have a common factors! Which is a contradiction with what we have assume at the beginning.

Theorem

- n is even iff n^{k} is even for any integer $\mathrm{k}>1$.
- n is odd $\mathrm{iff} \mathrm{n}^{\mathrm{k}}$ is odd for any integer $\mathrm{k}>1$.
- Proof.
- Exercise

Theorem

At least 4 of any 22 days must fall on the same day of week

Proof: (by contradiction)

- Assume not, i.e., each day of the week is repeated at most 3 times.
- Then the number of days is $\leq 3 \times 7=21$ days, which is a contradiction.

Theorem

The following are equivalent

- $\mathrm{P}: \mathrm{n}$ is even
- Q: $\mathrm{n}-1$ is odd
- R : n^{2} is even
- This means that $P \leftrightarrow Q \leftrightarrow R$
- $\mathrm{OR}(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{R}) \wedge(\mathrm{R} \rightarrow \mathrm{p})$

Proof

- (P) n is even $\rightarrow \mathrm{n}=2 \mathrm{k}$
$\rightarrow \mathrm{n}-1=2 \mathrm{k}-1=2(\mathrm{k}-1)+1$
$\rightarrow \mathrm{n}-1$ is odd (Q)
-(Q) $\mathrm{n}-1$ is odd $\rightarrow \mathrm{n}-1=2 \mathrm{k}+1$
$\rightarrow \mathrm{n}=2(\mathrm{k}+1) \rightarrow \mathrm{n}^{2}=2\left(2(\mathrm{k}+1)^{2}\right)$
$\rightarrow n^{2}$ is even (R)
- (R) n^{2} is even $\rightarrow n$ is even (P)

Counter Examples

- Every positive integer is the sum of the squares of two integers.
- Not true:

Proof: (by counter example)

- Consider 3 and notice that
$3=2+1=3+0$
- And so it's not a sum of two squares.

Mistakes in Proofs

Be careful of

- Fallacy of affirming the conclusion
- Fallacy of denying the hypothesis
- Fallacy of begging the question (or circular reasoning)
- Read about this in section 1.6.

Mistakes in Proofs

- Theorem: $1=2$
- Proof:
- Let a and b be equal integers
- Then $a=b$ and so $a^{2}=a b$
- so $a^{2}-b^{2}=a b-b^{2}$
- $(a-b)(a+b)=b(a-b)$
- $a+b=b$
- $2 \mathrm{~b}=\mathrm{b}$
- 2=1 !!!

