Introduction to Proofs

Section 1.6

Definition

 Proof: is a valid argument that establishes the truth of a mathematical statement.

 It may use axioms, hypothesis, rules of inference, other propositions (facts), lemmas, corollaries, & theorems.

Formal Long Difficult to construct & read Informal Short Easy to construct & read

Definitions

- Axioms (postulates) are statements that can be assumed to be true.
- Theorem: is a statement that can be proven to be true.
- Conjecture: is a statement that one believe it is true, but has not been proven yet.
- Less Important theorems are called – Proposition
 - Lemma: if used to prove other theorems
 - Corollary: if concluded from a theorem

Remark

 Mathematicians usually don't use universal quantifiers (or universal instantiation or generalization) explicitly.

Example

• $\forall x \quad (P(x) \rightarrow Q(x))$ will be written as If P(x), then Q(x) where x belongs to its domain.

 When we try to prove it, we should show that P(c) → Q(c) for arbitrary c in the domain.

Proof Techniques

- 1. Direct Proofs
- 2. Indirect Proofs
 - 1. Proof by contraposition
 - 2. Proof by contradiction

Direct Proofs

• For: " $p \rightarrow q$ " Or $\forall x (P(x) \rightarrow Q(x))$

To prove such statements

- assume that p (or P(c)) is true
- use all possible facts, lemmas, theorems, and rules of inferences
- and try to show that q (or Q(c)) is true.

Definition

- 1. $n \in Z$ is even $\leftrightarrow \exists k \in Z$ s.t. n = 2k
- 2. $n \in Z$ is odd $\leftrightarrow \exists k \in Z$ s.t. n = 2k+1
- 3. $n \in Z$ is a perfect square $\leftrightarrow n = k^2$ for some $k \in Z$.

Note: $n \in Z \rightarrow n$ is even \oplus n is odd

- If $n \in Z$ is odd, then n^2 is odd,
- i.e., $\forall n \in \mathbb{Z}$ (n is odd $\rightarrow n^2$ is odd) Proof. (Direct)
- Assume that n∈Z is odd, then by definition ∃ k ∈Z s.t. n=2k+1
- Then $n^2 = (2k+1)^2 = 4 k^2 + 4 k + 1$ = 2(2k² + 2 k) + 1 = 2 m + 1

And so n^2 is odd.

- If n, $m \in Z$ are perfect squares, then nm is also a perfect square.
- Proof. (direct)
- Let n, m be perfect squares.
- Then $n=k^2$ and $m=l^2$ for some k, $l \in Z$.
- Then $nm = k^2 I^2 = (k I)^2$.
- And so nm is a perfect square.

Indirect Proofs.

Proof by contraposition:

- Note that $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- So to prove p→q we need to assume ¬q and try to prove ¬p

Examples

- 1. If $n \in Z$ and 3n+2 is odd, then n is odd Proof. (by contraposition)
- Assume that n is even
- Then n = 2 k for some integer k
- So 3n+2 = 6 k + 2 = 2 (3k+1) = 2 m
- Thus 3n+2 is even

Examples

2. If n= a b where a & b are positive integers, then

a ≤ sqrt(n) or b ≤ sqrt(n)

Proof. (by contraposition)

assume a > sqrt(n) & b > sqrt(n)
Then a b > n, i.e., a b ≠ n

Vacuous & Trivial Proofs

Consider $p \rightarrow q$

 Vacuous Proof: if p is false then the statement is always true.

 Trivial Proof: if q is true then the statement is always true.

Examples

If 0>1, then n² > n for any integer n.
 (vacuous)

• If a > b, then $a^2 \ge 0$. (trivial)

Definition

- Any real number r is rational iff there are two integers n and m s.t. m ≠ 0 and r =n/m.
- r is irrational iff it is not rational.

• We write **Q** for the set of all rational.

 $\forall x, y \in Q, x + y \in Q$ Or $\forall x, y \in R (x, y \in Q \rightarrow x + y \in Q)$ Proof. (direct)

- Let x, y∈Q.
- Then $x = n_1/m_1$ and $y = n_2/m_2$, and $m_1 \neq 0 \neq m_2$
- Then $x + y = n_1/m_1 + n_2/m_2$ = $(n_1m_2 + n_2m_1)/(m_1m_2)$ • So $x + y \in Q$

If $n \in Z$ and n^2 is odd, then n is odd Proof Direct: $n^2 = 2k+1$, and so n = sqrt(2k+1), and then???

Contraposition: n is even \rightarrow n = 2k \rightarrow n² = 4 k² = 2(2k²) \rightarrow n² is even

Proofs by contradiction

- To prove that p is true, we show that ¬p leads to some kind of a contradiction=F proposition like (r ∧¬r)=F.
- To prove that p → q by contradiction, we assume that p is true & q is false and try to get a contradiction, i.e., (p ∧¬q) →F.

Example

- Sqrt(2) is irrational.
- Proof. (by contradiction)
- Assume not, i.e., sqrt(2) = n/m for some integers n and m≠0.
- We can assume that n and m have no common factors.
- Then $2 = n^2/m^2$, or indeed $2 m^2 = n^2$
- Which means that n² is even
- So n is even (by theorem)

Continue ..

- So n = 2k and hence $n^2 = 4k^2 = 2m^2$
- Or 2 $k^2 = m^2$, and so m^2 is even
- This means that both n and m are even,
- i.e., they have a common factors! Which is a contradiction with what we have assume at the beginning.

• n is even iff n^k is even for any integer k>1.

n is odd iff n^k is odd for any integer k>1.

- Proof.
- Exercise

At least 4 of any 22 days must fall on the same day of week

- Proof: (by contradiction)
- Assume not, i.e., each day of the week is repeated at most 3 times.
- Then the number of days is ≤ 3 x 7=21 days, which is a contradiction.

The following are equivalent

- P: n is even
- Q: n-1 is odd
- R: n² is even

- This means that $P \leftrightarrow Q \leftrightarrow R$
- OR (P \rightarrow Q) \land (Q \rightarrow R) \land (R \rightarrow p)

Proof

- (P) n is even \rightarrow n = 2k
- $\rightarrow n-1 = 2k-1 = 2(k-1) + 1$
- \rightarrow n-1 is odd (Q)
- (Q) n-1 is odd \rightarrow n-1 = 2k+1
- $\rightarrow n = 2(k+1) \rightarrow n^2 = 2 (2 (k+1)^2)$
- \rightarrow n² is even (R)
- (R) n^2 is even \rightarrow n is even (P)

Counter Examples

- Every positive integer is the sum of the squares of two integers.
- Not true:
- Proof: (by counter example)
- Consider 3 and notice that 3=2+1=3+0
- And so it's not a sum of two squares.

Mistakes in Proofs

Be careful of

- Fallacy of affirming the conclusion
- Fallacy of denying the hypothesis
- Fallacy of begging the question (or circular reasoning)

• Read about this in section 1.6.

Mistakes in Proofs

- Theorem: 1 = 2
- Proof:

- Let a and b be equal integers
- Then a = b and so $a^2 = ab$
- so $a^2 b^2 = ab b^2$
- (a-b)(a+b) = b(a-b)
- a+b = b
- 2b = b
- 2=1 !!!