## Cbapter 9 Graphs

## Sec. 9.2: Terminology

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be an undirected graph \& $e=\{u, v\}$ be an edge, then
- $u$ and $v$ are adjacent
- $e$ is incident to $u$ and $v$
- $u$ and $v$ are connected
- $u$ and $v$ are endpoints of e


## Definition

- Degree of a vertex $\mathbf{v}$ in an undirected graph $G$ is denoted by deg $(v)$ and is defined to be the number of edges incident to it where a loop contributes twice to the degree.


## Definition

# - If $\operatorname{deg}(v)=0$ then $v$ is called isolated - If deg $(\mathrm{v})=1$ then v is called pendant 

## The Hand Shaking Theorem

Let G be an undirected graph (simple, multi, or pseudo) with e edges. Then

The sum of all degrees = 2 e

$$
\operatorname{deg}(v)=2 e
$$

- Notice that 2e is even number
- Any undirected graph has an even number of vertices of odd degree
*Because
-the sum of all vertices of even degrees is even
-The sum of all degrees is even


## Definition

- Let G be a directed graph \& e=(u,v) be an edge, then
$-u$ is adjacent to $v$
$-v$ is adjacent from $u$
$-u$ is initial vertex of $e$
-v is terminal (end) vertex of e


## Definition

- In- $\operatorname{deg}(\mathrm{v})=\operatorname{deg}^{-}(\mathrm{v})=$ \# of edges with v as terminal vertex
■ Out-deg $(\mathrm{v})=\operatorname{deg}^{+}(\mathrm{v})=$ \# of edges with v as initial vertex


## Theorem

- Let G be a directed graph, then

The sum of all in-degrees
= the sum of all out-degrees
$=$ total number of edges


## Special graphs

- Complete graph on $n$ vertices $K_{n}$ : is a simple graph with all of the $\mathrm{C}(\mathrm{n}, 2)$ edges
- Cycle $\mathrm{C}_{\mathrm{n}}, \mathrm{n} \geq 3$
- Wheel $W_{n}, n \geq 3$
-n-Cubes $Q_{n}, n \geq 1$


## Special Graphs

| Graph | Vertices | Edges | Degree |
| :---: | :---: | :---: | :---: |
| $\mathrm{K}_{\mathrm{n}}$ | n | $\mathrm{C}(\mathrm{n}, 2)$ | $\mathrm{n}-1$ |
| $\mathrm{C}_{\mathrm{n}}$ | n | n | 2 |
| $\mathrm{~W}_{\mathrm{n}}$ | $\mathrm{n}+1$ | 2 n | 3 and n |
| $\mathrm{Q}_{\mathrm{n}}$ | $2^{\mathrm{n}}$ | $\mathrm{n} 2^{\mathrm{n}-1}$ | n |

## Bipartite Graph

- A simple graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a bipartite if $\mathrm{V}=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and $\mathrm{V}_{1} \cap \mathrm{~V}_{2}=\varnothing$ such that no edge in E connects two vertices $\mathrm{V}_{1}$ in or two vertices in $\mathrm{V}_{2}$,
- Note that $\mathrm{C}_{\mathrm{n}}$ is bipartite iff n is even


## Complete Bipartite Graph

$\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is a complete bipartite iff $\left|\mathrm{V}_{1}\right|=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$ and every vertex in $\mathrm{V}_{1}$ is connected to every vertex in $\mathrm{V}_{2}$ and vice versa.

## Sec 9.3: Graphs Representations

## Sec 8.3: Graphs Representations

There are two ways to represent graphs

1. Adjacency Lists: each vertex has a linked list that contains vertices adjacent to it.
2. Adjacency Matrix: which is defined as follows

## Adjacency Matrix

For any simple graph G, we have an adjacency matrix $A_{G}=\left[a_{i j}\right]$, where $a_{i j}=1$, if $\left\{v_{i}, v_{j}\right\} \in E$, and 0 otherwise.

- Notice that $A_{G}$ is symmetric if G is simple and for directed graphs it may not be.
- $A_{G}$ is called sparse if it has few 1 s .


## Adjacency Matrix

- For multigraphs or pseudographs $\mathrm{A}_{\mathrm{G}}$ can be represented by
$a_{i j}=k$, if there are $k$ edges between $v_{i}$ and $\mathrm{v}_{\mathrm{j}}$.


## Isomorphism

## Isomorphism

- Two graphs $\mathrm{G}_{1} \& \mathrm{G}_{2}$ are isomorphic iff there is a bijective function $\mathrm{f}: \mathrm{V}_{1} \rightarrow \mathrm{~V}_{2}$ such that whenever

$$
\{a, b\} \in E \text { then }\{f(a), f(b)\} \in E .
$$

- This means that G1 can be redrawn to get G2 with the same number of vertices, edges and degrees.
- See examples in textbook.


## Isomorphism

- There are some graphical properties that are invariant (preserved) under isomorphism, e.g.
- \# of vertices
- \# of edges
- Degrees
- Cycles
- Euler cycles
- Hamilton cycles


## Definitions

- A subgraph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a graph $H=(U, F)$ such that $U \subseteq V$ and $F \subseteq E$.
- A graph is called regular iff every vertex has the same degree.
- A graph is called n-regular iff every vertex has deg=n.


## Sec. 9.4: Connectivity

## Definitons

- A path is sequence of edges $\{a, b\},\{b, c\}$, \{c,d\}, \{d,e\}, ...
- The length of a path $e_{1}, e_{2}, e_{3}, e_{4}, . . e_{n}$ is the number of edges in the path $=$. .
- A path is a circuit (cycle) when it begins and ends with the same vertex and $\mathrm{n}>0$.
- The path is said to passes through the vertices a, b, c, .. Or traverses the edges $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}, . . \mathrm{e}_{\mathrm{n}}$


## Definition

- A path is simple if it doesn't contain the same edge more than once.
- An undirected graph is connected iff there is a simple path between any two vertices.
- A directed graph is strongly connected iff there is a 2-way path between any two vertices.
- A directed graph is weakly connected iff there is a path between any two vertices inits underlying undirected graph.


## Definition

- A cut vertex in a connected graph is a vertex whose removal produces unconnected graph
- A cut edge (bridge) in a connected graph is an edge whose removal produces unconnected graph


## Definitions

- The connected components in any graph are the maximum connected subgraphs
- The strongly connected components in any directed graph are the maximum strongly connected subgraphs


## Sec. 9.5: Euler and Hamilton Paths and Circuits

## Definitions

- Euler path in a graph G is a simple path containing every edge in G.
- Start from a vertex \& walk on every edge exactly once but you don't have to return back to the same vertex
- Euler circuit in a graph $G$ is a simple circuit containing every edge in G.
- Start from a vertex \& walk on every edge exactly once and return back to the same vertex.
- A connected multigraph has an Euler circuit iff every vertex has an even degree.
- A connected multigraph has an Euler path but not an Euler circuit iff there exists exactly two vertices of odd degrees and the others are even degrees.


## Definition

- A Hamilton path in G is a path that visits every vertex exactly once
- A Hamilton circuit in G is a circuit that visits every vertex exactly once
- Note that every $\mathrm{K}_{\mathrm{n}}$ has Hamilton Circuit because it has $\mathrm{C}_{\mathrm{n}}$

Remark

# Some graphs could have Euler path but no circuits and same for Hamiltonian. 

## Sec 9.7: Planar graphs

## Definition

- A graph is called planar if it can be drawn in the plane without any edge crossing. Any planar graph split the plane into regions.
- E.g., $\mathrm{K}_{4}$ and $\mathrm{Q}_{3}$ are planar


## Euler Formula

- Let G be any connected simple planar graph. Then the number of regions

$$
r=|E|-|V|+2
$$

## Sec. 9.8: Graph Coloring

## Problem

Color a map of regions with common borders such that no two neighbor regions have the same color.

- Maps can be modeled by a graph called the dual graph where
- Vertices represent regions
-Edges represent common borders


## Definition

- A coloring of a simple graph is an assignment of colors of vertices of G such that adjacent vertices are colored with different colors.
- The chromatic number of a graph G is the least number of colors needed to color the graph correctly.


## The 4 colors Theorem

$\square$ The chromatic number of

$$
\text { a planar graph } \leq 4 \text {. }
$$

- Recall that a graph is called planar if it can be drawn in the plane without any edge crossing.


## Examples

$$
\begin{aligned}
& \chi\left(\mathrm{K}_{\mathrm{n}}\right)=\mathrm{n} \\
& \chi\left(\mathrm{C}_{\mathrm{n}}\right)=2 \text { if } \mathrm{n} \text { is even and } 3 \text { otherwise } \\
& \chi\left(\mathrm{W}_{\mathrm{n}}\right)=3 \text { if } \mathrm{n} \text { is even and } 4 \text { otherwise }
\end{aligned}
$$

## Chapter 10: Trees

## Definition

- A tree is a connected undirected acyclic (with no cycle) simple graph
- A collection of trees is called forest.

Theorem

- An undirected graph is a tree iff there is a unique simple path between any two vertices.


## Definition

- A rooted tree is a tree in which one vertex is specified as the root \& every edge is drawn away from the root


## Definition


children

## Definition

- Root: a vertex with no parent
- Leaf: a vertex with no children
- Internal node: vertex with children
- Descendants: all children and children of children
- Ancestors: parent and parents of parents
- Siblings: vertices with the same parent


## Definition

- An m-ary tree is a rooted tree where the number of children of any internal vertex $\leq \mathrm{m}$
- A full m-ary tree is an m-ary tree where the number of children of any internal vertex = m
- if $m=2$, we call it binary tree


## Definition

- In an ordered rooted tree the children are ordered.
- For example, in an ordered binary tree, a vertex may have left child and right child


## Properties

- Number of edges in a tree of size $\mathrm{n}=\mathrm{n}-1$ - Any full m-ary tree with i internal vertices has m i + 1 vertices


## Properties

A full m-are tree with
$\square$ vertices has $i=(n-7) / m$ internal and
$l=((m-1) n+1) / m$ leaves
i internal has $n=m i+1$ vertices and
$l=(m-T) i+I$ leaves

- l leaves has $n=(m l-1) /(m-1)$ vertices and
$i=(l-7) /(m-1)$ internal

