Cb. 2 Basic Structures

Section 1

Sets

Principles of Inclusion and Exclusion

$$
\begin{aligned}
& \text { - }|A \cup B|=|A|+|B|-|A \cap B| \\
& |A \cup B \cup C| \\
& =|A|+|B|+|C|-|A \cap B|-|A \cap C| \\
& -|B \cap C|+|A \cap B \cap C| \\
& -\left|A^{c}\right|=|U|-|A|
\end{aligned}
$$

Disjoint sets

- A \& B are disjoint sets iff $A \cap B=\varnothing$
- Example:

$$
\begin{gathered}
A=\{1,2,3\} \\
B=\{4,5,6\}
\end{gathered}
$$

Power Set

- $P(A)=$ The power set of a set $A=$ the set of all subsets of A.
$\square A \in P(S)$ iff $A \subseteq S$
- |P(\{\{a, \{b\}\}, $a,\{b\}\}) \mid=2^{3}$
- There is no set A s.t. $|P(A)|=0$
- There is a set A s.t. $|P(A)|=1$
- There is no set A s.t. $|P(A)|=3$

Power Set

$A=B$ iff $P(A)=P(B)$
Proof
$" \Rightarrow$ " Suppose that $A=B$. Then $P(A)=P(B)$
" \Leftarrow " If $P(A)=P(B)$, then $A \in P(A)=P(B)$ and so $A \subseteq B$
Similarly, $B \in P(B)=P(A)$ and so $B \subseteq A$
Therefore A =B

Power Set

$\square P(?)=\{\varnothing,\{a\},\{a, \varnothing\}\}$
Note that:
$\square \varnothing \in\{\varnothing\}, \varnothing \subseteq\{\varnothing\}, \varnothing \subset\{\varnothing\}, \varnothing \neq\{\varnothing\}$
$\square\{2\} \in\{2,\{2\}\},\{2\} \subset\{2,\{2\}\}, 2 \in\{2,\{2\}\}$
$\square\{\{2\}\} \in\{2,\{2\}\},\{2\} \notin\{2\}$
-a $\notin\{\{a\},\{a,\{a\}\}\}$

Some facts

$$
\begin{aligned}
& \square A \cup B=A \Leftrightarrow B \subseteq A \\
& \square A-B=A \Leftrightarrow A \cap B=\varnothing \\
& \square A-B=B-A \Leftrightarrow A=B \\
& A=A-B \cup(A \cap B)
\end{aligned}
$$

Cb. 2 Basic Structures

Section 2

Set Operations

Set Operations

1. Union
2. Intersection $A \cap B$
3. Intersection $A \cap B$
4. Complement $A^{c}=\bar{A}=U-A$ complement of A w.r.t. to U
5. Difference $A-B=A \cap B^{c}$
6. Difference $A-B=A \cap B^{c}$
7. Generalized operations
$A \cup B$

Example

- A = set of students who live 1 mile of school
- $B=$ set of students who walk to school

1. $A \cup B=$ set of students who live 1 mile of school OR walk to it.
2. $A \cap B=$ set of students who live 1 mile of school AND walk to it.
3. $\mathrm{A}-\mathrm{B}=$ set of students who live 1 mile of school but not walk to it.

Set Identities

- See Table 1 in page 124
- Identity Laws:
$A \cup \varnothing=A$
$\mathrm{A} \cap \mathrm{U}=\mathrm{A}$
- Dominations Laws:
$\mathrm{A} \cup \mathrm{U}=\mathrm{U}$
$A \cap \varnothing=\varnothing$

Set Identities

- Idempotent Laws:
$A \cup A=A$
$A \cap A=A$
- Complementation Law:
$\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
- Commutative Laws:
$A \cup B=B \cup A$
$A \cap B=B \cap A$

Set Identities

- Associative Laws:
$A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
- Distributive Laws:
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
- De Morgan's Laws:
$(A \cup B)^{c}=B^{c} \cap A^{c}$
$(A \cap B)^{c}=B^{c} \cup A^{c}$

Set Identities

- Absorption Laws:
$A \cup(A \cap B)=A$
$A \cap(B \cup C)=A$
- Complement Laws:
$A \cap A^{C}=\varnothing$
$A \cup A^{c}=U$

Proof of $A=B$

- Show that $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \subseteq \mathrm{A}$

Show that $\forall x(x \in A \leftrightarrow x \in B)$

- Direct proof

Examples

$(A \cap B)^{c}=B^{c} \cup A^{c}$
Proof
$(A \cap B)^{c}=\{x \in U \mid x \notin A \cap B\}$

$$
=\{x \in U \mid \neg(x \in A \cap B)\}
$$

$$
=\{x \in U \mid \neg x \in A \vee \neg x \in B\}
$$

$=\{x \in U \mid x \notin A \vee x \notin B\}$
$=\{x \in U \mid x \notin A\} \cup\{x \in U \mid x \notin B\}$
$=A^{c} \cup B^{c}$

Another proof of $(\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}=\mathrm{B}^{\mathrm{c}} \cup \mathrm{A}^{\mathrm{c}}$

$x \in(A \cap B)^{c} \Leftrightarrow x \notin A \cap B$
$\Leftrightarrow x \notin A$ or $x \notin B$
$\Leftrightarrow x \in A^{c}$ or $x \in B^{c}$
$\Leftrightarrow x \in A^{c} \cup B^{c}$

