Predicates and Quantifiers

Predicate Calculus

Section 1.3

Definition

- Propositional Function P(x) is a statement that has a variable x.
- Examples: P(x) P(x) = "The Course x is difficult" P(x) = "x+2 < 5"
- Note: a propositional function is not a proposition because it depends on the value of x.
- A propositional function is called a predicate

Examples

 If P(x) = "x > 3", then P(4) is true but not P(1).

 It also possible to have more than one variable in one statement, e.g.,

$$Q(x,y) = "x = y - 2"$$

Remark

- P(x) is a function that takes a value for x and produce either true or false.
- Example: $P(x) = "x^2 > 2"$
 - $\mathsf{P}: \textbf{Domain} \to \{\mathsf{T}, \mathsf{F}\}$

 Domain of the values of x sometime is called the domain of discourse

Quantifiers

 A predicate (propositional functions) could be made a proposition by either assigning values to the variables or by quantification.

 Predicate Calculus: Is the science of studying predicate logic with quantifiers.

Quantifications

1. Universal quantifier: P(x) is true for all (every) x in the domain. We write $\forall \mathbf{x} \mathbf{P}(\mathbf{x})$ 2. Existential quantifier: there exists at least one x in the domain s.t. P(x) is true. We write $\exists x P(x)$ 3. Others: there is a unique x s.t P(x) is true. We write $\exists \mathbf{I} \mathbf{x} \mathbf{P}(\mathbf{x})$

Predicates and Negations

Predicate	When true	When false	Negation
∀ x P(x)	For all x, P(x) is true	There is at least one x s.t. P(x) is false	∃ x ⊸P(x)
∃x P(x)	There is at least one x s.t. P(x) is true	For all x, P(x) is false	∀ x ¬P(x)

Logically Equivalence

<u>Def.</u> Two statements involving predicates & quantifiers are logically equivalence if and only if

they have the same truth values independent of the domains and the predicates.

Examples:

• \neg (\forall x P(x)) \equiv \exists x \neg P(x)

• \neg (\exists x P(x)) \equiv \forall x \neg P(x)

Domain (or Universe) of Discourse

 It is the domain of values of x for which the proposition p(x) could be true or false.

• It is important to specify the domain.

Examples	
• $P(x) = "x+1 = 2"$	Domain =R
Proposition	Truth Value
$\forall x P(x) \forall x \neg P(x) \exists x P(x) \exists x P(x) \exists x P(x) \exists ! x P(x) \exists ! x \neg P(x) $	F F T T T F

Examples

•	P(x)	=	" X ²	>	0″	
---	------	---	-------------------------	---	----	--

Domain	Proposition	Truth Value		
R	∀x P(x)	F		
Ζ	$\forall x P(x)$	F		
Z - {0}	∀ x P(x)	T		
Z	$\exists \mathbf{I} \mathbf{x} \neg \mathbf{P}(\mathbf{x})$	T		
N={1,2,}	∃ x ¬ P(x)	F		

Theorem

- If the domain of discourse is finite, say Domain = $\{x_1, x_2, ..., x_n\}$, then
- $\forall \mathbf{x} \mathbf{P}(\mathbf{x}) \equiv \mathbf{P}(\mathbf{x}_1) \land \mathbf{P}(\mathbf{x}_2) \land \dots \land \mathbf{P}(\mathbf{x}_n)$

 $\exists X P(X) \equiv P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$

More Examples

Precedence \forall , \neg , \land , \lor , \rightarrow , \leftrightarrow \exists \oplus

Example:

 $\left(\left(\forall x \ P(x) \right) \lor \left(\left(\exists ! x \ Q(x) \right) \land \left(\forall x \neg P(x) \right) \right) \right)$

Wrong Equivalences

- $\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$
- One can construct an example that makes the above equivalence false. Consider the following

Х	1	2	3	4	5	6	7
P(x)	Т	F	F	Т	F	Т	Т
Q(x)	F	Т	Т	F	Т	Т	F

• $\forall x (P(x) \lor Q(x)) \equiv T$ but

• $\forall x P(x) \lor \forall x Q(x) \equiv F$

Examples

- ($\forall x P(x)$) $\lor Q(x) \neq \forall x$ ($P(x) \lor Q(x)$)
- Notice that F(x) = (∀ x P(x)) ∨ Q(x) is not even a proposition. It is a predicate.

Wrong Equivalences

- $\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$
- One can construct an example that makes the above equivalence false. Consider the following

Х	1	2	3	4	5	6	7
P(x)	Т	F	F	Т	F	Т	Т
Q(x)	F	Т	Т	F	Т	F	F

• $\exists x (P(x) \land Q(x)) \equiv F$ but

• $\exists x P(x) \land \exists x Q(x) \equiv T$

Correct Equivalences

- $\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$
- $\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$