ICS 252–Discrete Structures

Major Exam 2

Date: Nov. 26th, 2005

Duration: 90 minutes

Please write your name, ID and section numbers.

Name:

ID#:

Section #:

This is a closed-book and closed-notes exam. No calculators are allowed. You may use any of the following notations in your final answers without any farther simplifications:

$$\lfloor n/m \rfloor, \lceil n/m \rceil, \binom{n}{r}, C(n,r), P(n,r), n!.$$

Q.#	Marks	Scores	Remarks
1	20		
2	20		
3	12		
4	12		
5	12		
6	16		
7	8		
8	8		Bonus
Total	100 + 8		

- a) What is the probability that a randomly chosen integer from the first 100 positive integers
 - 1. is 36?
 - 2. is even?
 - 3. is greater than 50?
 - 4. is not a multiple of 10?
 - 5. is not divisible by 7?
- b) What is the probability of having an even number when a die is rolled given that
 - 1. any outcome is equally likely?
 - 2. the number 4 is twice as likely to appear as each of the other five numbers on the die?
- c) What is the probability that a permutation chosen randomly from the set of all possible permutations of $\{1, \ldots, n\}$
 - 1. has the numbers sorted decreasingly or increasingly?
 - 2. starts with 1 and ends with n?
 - 3. has 1 immediately before 2?

Question 2: $[2 \times 10 \text{ marks}]$

a) Suppose a card is selected randomly from a dick. Let A be the event that the card is a diamond, and B be the event that the card is a queen. Find the following probabilities, and state whether A and B are independent or not.

1. P(A) =

2. P(B) =

3. $P(A \cap B) =$

- 4. $P(A \cup B) =$
- 5. P(A | B) =
- b) What is the probability that a five-card poker hand
 - 1. contains the king of hearts?
 - 2. contains all different kings?
 - 3. does not contain any king?
 - 4. contains at least two different suits?
 - 5. contains exactly three different kinds?

Question 3: $[2 \times 6 \text{ marks}]$

a) For each of the following recurrence relations write the first 5 numbers.

1. $a_0 = 0$, and $a_n = 2a_{n-1} + n$, for $n \ge 1$.

2. $a_0 = 0$, $a_1 = 1$, and $a_n = na_{n-1} - a_{n-2}$, for $n \ge 2$.

3. $a_0 = 1$, $a_1 = 2$, and $a_n = a_{n-1} + (-1)^n a_{n-2}$, for $n \ge 2$.

- b) For each of the following sequences, write the next number in the sequence, and find a recurrence relation for the *n*-th term.
 - 1) 1, 3, 5, 7, 9, 11, 13, 15,...

 $2) \ 1, \, 2, \, 3, \, 1, \, 2, \, 3, \, 1, \, 2, \, 3, \, \ldots$

3) 0, 1, 2, 3, 6, 11, 20, 37, ...

Question 4: $[4 \times 3 \text{ marks}]$

A young pair of rabbits (one of each sex) is placed on an island. Suppose that during the first month the pair of rabbits produces only one rabbit; during the second month two new rabbits are produced, and so on-during the *n*-th month *n* new rabbits are produced. Let R_n be the total number of rabbits exactly after *n* months.

- a) Write a recurrence relation for R_n .
- b) Find an explicit formula for R_n ?
- c) What is the total number of rabbits on the island exactly after one year?

Question 5: $[4 \times 3 \text{ marks}]$

Find the solution for each of the following recurrence relations.

a) $a_0 = 1$, and $a_n = -2a_{n-1}$, for $n \ge 1$.

b) $a_0 = 1$, $a_1 = 1$, and $a_n = 9a_{n-2}$, for $n \ge 2$.

c) $a_0 = 3$, $a_1 = 2$, and $2a_n = a_{n+1} + a_{n-1}$, for $n \ge 2$.

Question 6: $[8 \times 2 \text{ marks}]$

a) Draw the following graphs: C_5 , W_5 , K_5 and Q_3 .

b) Write the number of vertices and the number of edges for each of the following graphs.

Graph	# of vertices	# of edges
K_n		
C_n		
W_n		
Q_n		

Question 7: $[2 \times 4 \text{ marks}]$

- a) Is there an undirected graph with 19 vertices each of degree 3? Explain your answer.
- b) Is there a directed graph with 19 vertices each of in-degree 3 and out-degree 2? Explain your answer.
- c) How many edges does an undirected graph have if the degrees of its vertices are 4, 3, 2, 5, 1, and 7?
- d) How many edges does a directed graph have if the in-degrees of its vertices are 4, 3, 2, 5, 1, and 7?

Question 8: $[2 \times 4 \text{ bonus marks}]$

Consider the following process to generate a random simple graph G with n vertices. We start with the complete simple graph K_n . For each edge $\{u, v\}$ in K_n , we flip an independent coin and if it comes up a tail we remove the edge from the graph, otherwise the edge stays. The remaining graph at the end of this process is G. Suppose that each coin comes up a head with probability $p \in (0, 1)$. Let X be the number of edges in the random graph G. Notice that $0 \leq X \leq N$, where N is the number of edges in K_n .

- a) What is the probability that X is not 0?
- b) What is the probability that $G = K_n$?
- c) Let u be a certain fixed vertex in G.
 - 1. What is the probability that u is not isolated?
 - 2. What is the probability that u is pendant?