
TWO-WAY CHAINING WITH REASSIGNMENT

KETAN DALAL, LUC DEVROYE, EBRAHIM MALALLA AND ERIN MCLEISH∗

Abstract. We present an algorithm for hashing bαn c elements into a table with n separate
chains that requires O(1) deterministic worst-case insert time, and O(1) expected worst-case search
time for constant α. We exploit the connection between two-way chaining and random graph theory
in our techniques.

Key words. hashing, two-way chaining, worst-case search time, random graphs, probabilistic
analysis of algorithms

AMS subject classifications. 68Q25, 68M20, 68P10, 60G99, 05C80

1. Introduction. In classical uniform hashing with chaining, a set of s keys are
inserted into a hash table with n separate chains (or linked lists) via a uniform hash
function. The insertion time is constant, and the average search time is proportional
to the load factor of the hash table α := s/n. However, even for constant load
factor, the worst-case search time (the length of the longest chain) is asymptotic to
log n/ log log n, in probability [18, 27].

Azar et al. [3] suggested a novel approach called the greedy two-way chaining
paradigm. It uses two independent uniform hash functions to insert the keys where
each key is inserted on-line into the shorter chain, with ties broken randomly. The
insertion time is still constant, while the average search time cannot be more than
twice the average search time of classical uniform hashing. However, the expected
maximum search time is only 2 log2 log n+2α+O(1) [3, 4, 24]. The two-way chaining
paradigm has been effectively used to derive many efficient algorithms [5, 6, 7]. A
further variant of on-line two-way chaining [28] improves the maximum search time
by a constant factor.

On the other hand, one can show that the off-line version of two-way chaining,
where all the hashing values of the keys are known in advance, yields better worst-case
performance [3, 8, 25]. Czumaj and Stemann [8] proved that if s ≤ 1.67545943...× n,
one can find an assignment for the keys such that the maximum chain length is at
most 2, w.h.p. (with high probability, i.e., with probability tending to one as n →∞).
In general, for any integer k ≥ 2, it is known [23] that there is a threshold ck ∼ k
such that if s ≤ ckn, one can assign the keys such that the maximum chain length is
at most k, w.h.p. The insertion time, however, is proportional to s. This shows that
there is a large gap between the worst-case performances of the on-line and off-line
versions of two-way chaining. One wonders if it is possible to design an efficient on-
line two-way chaining algorithm whose worst-case search time is close enough to its
off-line one, while preserving constant insertion time and O(α) average search time.
Our goal here is to obtain constant expected maximum search and deterministic O(1)
insertion times when the load factor of the hash table is constant.

Many hashing schemes that achieve constant worst-case search time have been de-
veloped [11, 12, 13, 16]. However, these schemes use a large number of hash functions,
sometimes employ rehashing techniques, and have insertion times that are constant

∗Research of the authors was supported by NSERC Grant A3456, and NSERC Centre of Ex-
cellence IRIS grant “Learning machines,” and the National Science Foundation Graduate Re-
search Fellowship. Emails: kdalal@cs.mcgill.ca, luc@cs.mcgill.ca, emal-a@cs.mcgill.ca, and
mcleish@cs.mcgill.ca. School of Computer Science, McGill University, Montreal, Canada.

1

2 TWO-WAY CHAINING WITH REASSIGNMENT

only in an expected amortized sense. The closest to our work is a new hashing scheme
called cuckoo hashing [26, 10] which utilizes the two-choice paradigm to improve the
worst-case performance, but it relies also on the idea of reallocation of the inserted
keys. It inserts n keys into a hash table that is partitioned into two parts, each of size
d (1 + ε)n e, for some constant ε > 0. It uses two independent hash functions chosen
from an O(log n)-universal class—one function only for each sub-table. Each key is
hashed initially by the first function to a cell in the first sub-table. If the cell is full,
then the new key is inserted there anyway, and the old key is kicked out to the second
sub-table to be hashed by the second function. The same rule is applied in the second
sub-table. Keys are moved back and forth until a key moves to an empty location or a
limit of O(log n) moves is reached. When the limit is reached, new independent hash
functions are chosen, and the whole table is rehashed. The worst-case search time is
at most two, but the insertion time is constant only in an amortized expected sense.
An off-line and static version of this algorithm previously appeared in [25].

In this paper, we present a two-way chaining algorithm that is close to cuckoo
hashing but it achieves constant worst-case insertion time, deterministically, and con-
stant worst-case search time asymptotically almost surely, when the load factor is
constant. The space consumption is also linear. The idea is based on the structure of
a random multi-graph, a key reassignment technique, and a deamortization method.
The algorithm is divided into stages where at each stage the hash table is modelled
by a random graph with n vertices representing the chains and m edges denoting the
keys inserted during the stage. Inserting keys into chains corresponds to orienting
edges towards vertices. Our goal then is to minimize the maximum out-degree. This
model has been used earlier to analyze the off-line version of two-way chaining [8].
When the graph is a forest, it is easy to orient the edges such that the maximum
out-degree is one. In order to keep the maximum out-degree as low as possible, some
edges need to be reoriented when two trees are joined during the hashing process,
and this means that the corresponding keys also need to be reassigned. Furthermore,
cycles could occur in the random graph. Since the hashing process is on-line, we use a
queue to control the orientation process, thereby ensuring that every insertion opera-
tion takes only a constant time of work. This leads us to the elegant deamortization
method introduced by Gajewska and Tarjan [17]. In the next section we describe
the algorithm precisely, and assure that an insert takes O(1) deterministic worst-case
time. We analyze the worst-case search time in Section 3.

2. The Algorithm. We start by presenting a simplified algorithm that requires
ω(1) insertion time in the worst-case and then using a standard deamortization trick
to reduce the insertion time to O(1).

Our algorithm inserts s = bαn c keys into a hash table T with n separate chains
(implemented as doubly-linked lists) denoted by T [1], . . . , T [n] by using two inde-
pendent uniform hash functions f and g. We assume throughout that f and g map
the space of the keys to {1, . . . , n} such that if x1, . . . , xs are different keys, then
f(x1), g(x1), . . . , f(xs), g(xs) are independent and uniformly distributed on {1, . . . , n}.
So, a key x is inserted into one of the chains T [f(x)] or T [g(x)]. To search for any key,
we only examine the two possible hashing chains available to it. Thus, the worst-case
search time is at most twice the length of the longest chain plus the time needed to
compute the hashing values. For simplicity, we ignore the time for evaluating the
hash functions.

The hashing process is described as follows, (see Figure 1). In addition to the
hash table, the algorithm maintains a directed graph G(V,A), where V is a set of n

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 3

vertices and A is a set of arcs. Each vertex of G corresponds to a chain of T . An arc
〈u, v〉 ∈ A implies that there exists some key x whose hash values are u and v. The
direction of this arc indicates that x is located in the chain corresponding to u, i.e.
T [u]. (With some abuse of notation, we will refer to an edge (u, v) of G to indicate
either 〈u, v〉 or 〈v, u〉.) In addition, let X be a pointer to the linked-list node that
contains x, and let ∗X be the node itself. An important property of the arcs is that
they correspond to a subset of the keys contained in T , i.e., some keys are dropped.

To insert a key x into T , see Pseudocode 1. Notice that initially any key x is
always inserted into the chain T [f(x)]. However, during the hashing process the key x
may be reassigned back and forth between the two chains T [f(x)] and T [g(x)]. This
could happen by edge reversals as is shown, e.g., in Pseudocode 5.

Pseudocode 1 Insert(x)
1: u← f(x)
2: v← g(x)
3: Create new linked-list node, ∗X containing key x
4: Insert ∗X into T [u].
5: UpdateGraph(u, v, X).

The UpdateGraph operation enforces that G is acyclic and that every vertex has
out-degree at most one. This means that the graph is simply a forest of parent-pointer
trees. We represent the graph in an array where the array element corresponding to
a vertex u contains a parent pointer P [u] and a pointer X[u] to the linked-list node.
Thus the array element for vertex u represents the arc, 〈u, P [u]〉. The UpdateGraph
operation is described in Pseudocode 2. Note that in some cases, no edge is inserted
into G at all.

Pseudocode 2 UpdateGraph(u, v, X)

1: r1 ← FindRoot(u)
2: r2 ← FindRoot(v)
3: if r1 6= r2 then
4: ReverseRoot(u)
5: Link(u, v, X).
6: end if

The FindRoot(u) operation starts at u and takes parent pointers until the root
is found. See Pseudocode 3.

Pseudocode 3 FindRoot(u)
1: r1 ← u
2: while P[r1] 6= nil do
3: r1 ← P[r1]
4: end while
5: return r1

The Link(u, v, X) operation creates the arc 〈u, v〉 and updates T accordingly.
Recall that the chains of T are implemented as doubly-linked lists. Thus, the updates
to T can be performed in O(1) time. Additionally, Link(u, v, X) requires that u
be a root. See Pseudocode 4.

4 TWO-WAY CHAINING WITH REASSIGNMENT

Pseudocode 4 Link(u, v, X)
1: P[u] ← v
2: X[u] ← X
3: Move ∗X to T [u]

The ReverseRoot(u) function reverses the sequence of pointers from u to the
root of u’s component. See Pseudocode 5. At the end of this operation, u is the new
root of u’s component. Note that each reversal will update T as part of the Link
operation.

Pseudocode 5 ReverseRoot(u)
Ensure: P[u] = nil
1: if P[u] 6= nil then
2: ReverseRoot(P[u])
3: Temp ← P[u]
4: P[u] ← nil
5: Link(Temp, u, X[u])
6: end if

The following two facts are easy to see.
Lemma 1. At any point of time, the graph G is a forest of parent-pointer trees

with no self-loops or multiple edges.
Lemma 2. The Insert operation requires worst-case time not exceeding 4M +

O(1), where M is the maximum size of any tree in G.
We use two simple techniques to reduce the cost of the insertions. First, to reduce

the size of the trees, after each m = bβn c inserts, where β < 1/2 is some constant to
be picked later, we destroy G which amounts to simply zeroing the array representation
of G.

Next, following [17], we use a queue Q (implemented as a linked-list) to defer
some work to reduce the cost per insert. We define κ to be a (constant) parameter of
the algorithm that indicates the maximum number of operations that may take place
as part of each insert to process work items in Q. (The dependence of κ on β will
be made clear later on.) The algorithm is modified as follows. After every hash-table
insert, where a new list node is created for key x and inserted to the chain T [f(x)],
we append a graph-insert request to the end of the queue, Q. This is a request for
adding the edge (f(x), g(x)) to the graph G and orienting that edge appropriately.
Additionally, κ extra units of work will be performed on the request at the front of the
queue where one unit of work can be used to traverse or reverse an edge in the graph.
Once the request is completed, it is deleted from the queue, and the remaining time
is spent on the next element of the queue, until either Q is empty or the κ available
time steps are depleted.

To combine both techniques, we keep an extra graph structure G′ that is zeroed
incrementally as elements are inserted into G. After bβn c inserts, we will simply
swap G and G′. This allows us to reduce the cost of zeroing the graph structure every
bβn c inserts. There are some minor technicalities in implementing this approach
and the complete pseudocode for ConstantInsert is given in Pseudocode 6 in the
appendix. Essentially, the approach is to break down the operation of UpdateGraph
into constant time pieces.

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 5

y

T

g(x)

x

x

Q

G

G

f(y) g(y)

g(y)f(y)

f(x)

x

Fig. 2.1. Upon arrival of key x, it is inserted into T [f(x)], and then a request for adding a
corresponding arc is appended to the queue Q. Next, κ extra units of work are performed to process
the requests at the front of the queue. The figure also illustrates the ReverseRoot operation and the
insertion of 〈f(y), g(y)〉.

We will write Hash(n, s,m, κ) to refer to this modified process of hashing s keys
into a hash table of size n where m keys are inserted in each stage and κ is the constant
parameter mentioned above. We omit the details for initializing the data structures
and keeping track of an edge counter.

Lemma 3. Using the queue, the ConstantInsert operation requires time propor-
tional to κ.

The deferral described above creates a potential inconsistency between the state of
the hash-table and the state of the graph. Specifically, at the completion of a particular
insertion request, the graph represents the state of the hash-table at an earlier point
in time, i.e., prior to the requests that are still pending in the queue. Only when the
queue is empty will the graph represent the state of the hash table. Additionally,
because some requests are dropped and on occasion the graph is destroyed, the graph
may only contain a subset of the state of the hash-table.

3. The Worst-case Search Time. We shall prove the following theorem.
Theorem 1. There is a constant κ > 0 such that at any point of time during the

hashing process Hash(n, s, m, κ), where n, s, m ∈ N, and m = bβn c ≤ s = O(n log n),
for some constant β < 1/2, the maximum search time is at most 2 d s/m e+6, w.h.p.

The theorem confirms that if the load factor of the hash table s/n = O(1), then
asymptotically almost surely the maximum search time is constant. Since there is
a trivial lower bound of 2s/n, we see that we are roughly within 1/β of the best
possible, recalling that β can be picked arbitrarily close to 1/2. Before we proceed
with the proof, we need some facts. We write Bin(n, p) to denote a binomial random
variable with parameters n ∈ N and p ∈ [0, 1]. We recall the following binomial tail
inequalities.

Lemma 4 (Angluin and Valiant [2]). For n ∈ N, p ∈ [0, 1], and constant ε ∈ (0, 1),

6 TWO-WAY CHAINING WITH REASSIGNMENT

we have

P {Bin(n, p) ≥ (1 + ε)np} ≤ e−npε2/3,

and

P {Bin(n, p) ≤ (1− ε)np} ≤ e−npε2/2.

Let G(n,m) denote a random graph with n vertices and m multiedges that may
include loops where each edge connects two vertices chosen—one after another—
independently and uniformly at random, with replacement, from the set of all n
vertices. This means that any loop is realized with probability of 1/n2 and any
undirected non-loop edge is realized with probability of 2/n2. Recall that the classical
model G(n, p) of Erdös and Rényi [14, 15], has no loops or multiedges and each edge
is realized with a fixed probability p ∈ (0, 1). Throughout, we write [n] to denote the
set {1, . . . , n}.

Lemma 5. Let C(u) be the number of vertices in the connected component contain-
ing a fixed vertex u from the random graph G(n,m), where n ∈ N, and m = bβn c, for
some constant β < 1/2. Then for any t ∈ [n], we have P {C(u) > t} ≤ 2e−γ t, where
γ = (1/2 − β)2/(2 + 4β). Thus, if M is the size of the largest connected component,
then P

{
M > (1 + ε)γ−1 log n

} ≤ 2n−ε, for any fixed ε > 0.
Proof. We first need to distinguish between the components of the classical G(n, p)

and those of G(n, m). Let Rp(u) denote the number of vertices in the component
containing vertex u in G(n, p) and use Ck(u) for our model G(n, k). Next let |G(n, p)|
be the number of edges in G(n, p). Notice that

P {Rp(u) > t | |G(n, p)| = k} ≥ P {Ck(u) > t} ,

because conditional on having k edges, components in G(n, p) are stochastically larger
than those in G(n, k), since the latter includes multiedges and loops. This leads to
the following relationship between Rp(u) and Cm(t):

P {Rp(u) > t} =
∑

k

P {Rp(u) > t | |G(n, p)| = k}P {|G(n, p)| = k}

≥
∑

k

P {Ck(u) > t}P {|G(n, p)| = k}

≥
∑

k≥m

P {Ck(u) > t}P {|G(n, p)| = k}

≥
∑

k≥m

P {Cm(u) > t}P {|G(n, p)| = k}

= P {Cm(u) > t}P {|G(n, p)| ≥ m}
≥ P {Cm(u) > t} − P {|G(n, p)| < m} .

Thus,

P {Cm(u) > t} ≤ P {Rp(u) > t}+ P {|G(n, p)| < m} .

Bounding P {Rp(u) > t} in the classical model is done in the usual manner, see for
example Janson [21]. Imagine that u’s component grows out from vertex u, picking

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 7

up neighbors according to a binomial distribution. This certainly overestimates the
number of vertices in u’s component. Now suppose that the component containing
vertex u contains more than t vertices. This implies that the sum of t binomial
random variables is at least t. Denote these random variables by Xi, for i = 1..t, and
for an upper bound on |Rp(u)| assume that each Xi is distributed as Bin(n, p) and
that they are independent. The sum of t independent Bin(n, p) is itself a Bin(nt, p)
random variable. So we have that

P {|Rp(u)| > t} ≤ P {Bin(nt, p) ≥ t} .

Using Lemma 4, with p = (β + 1/2)/n and ε = 1/2−β
1/2+β ∈ (0, 1), we get

P {Bin(nt, (β + 1/2)/n) ≥ t} ≤ exp
(−t(1/2− β)2

3(1/2 + β)

)
.

Now it only remains to bound P {|G(n, p)| < m}. Notice that |G(n, p)| is dis-
tributed as Bin(N, p), where N =

(
n
2

)
, and

m− 1 ≤ βn− 1 = (n− 1)(β/2 + 1/4)− (n/4− βn/2 + 1− β/2− 1/4)
≤ Np− x,

where x = (1/4− β/2)n. Using the lower tail bound of Lemma 4, we get

P {|G(n, p)| < m} = P {Bin(N, p) ≤ m− 1} ≤ P {Bin(N, p) ≤ Np− x}

≤ exp
(−x2

2Np

)
= exp

(−n2(1/2− β)2

4(n− 1)(1/2 + β)

)

≤ exp
(−n(1/2− β)2

4(1/2 + β)

)
.

Putting everything together the resulting bound for the component size in our model
is

P {C(u) > t} ≤ exp
(−n(1/2− β)2

4(1/2 + β)

)
+ exp

(−t(1/2− β)2

3(1/2 + β)

)
.

Since the component size t ≤ n,

P {C(u) > t} ≤ 2 exp
(−t(1/2− β)2

4(1/2 + β)

)
= 2e−γt,

where γ = (1/2− β)2/(2 + 4β).
The next lemma, which is included to make the paper self-contained, assures us

that the asymptotic structure of G(n,m) is not complex when m < n/2. Further
details can be found in [20]. An edge is said to complete a cycle if both of its vertices
are chosen from the same connected component before its insertion.

Lemma 6. Let n ∈ N, and m = bβn c, for some constant β < 1/2. In the
random graph G(n,m), the expected number of edges that complete cycles is O(log n).
Furthermore, the probability that G(n,m) contains a connected component with more
than one cycle is o(1/ log n).

Proof. Let Yi be the number of edges that complete cycles in G(n,m) after (i−1)
edges have been inserted. Let Di be the event that the i-th edge completes a cycle. Let

8 TWO-WAY CHAINING WITH REASSIGNMENT

Mi be the random variable corresponding to the size of the largest component after
i− 1 edges have been inserted. Using the fact that the sequence {Mi} is increasing,

E [Ym+1] =
m∑

i=1

P {Di}

= E

[
m∑

i=1

I[Di]

]
= E

[
E

[∑
I[Di] | Mi

]]

≤
m∑

i=1

E [Mi/n] ≤ E [Mm+1]

≤ 2
γ

log n + mP
{

Mm+1 >
2
γ

log n

}

= O(log n) ,

which follows from Lemma 5. Next, we show that it is unlikely for a component to
contain more than one cycle.

Let Ai be the event that Mi ≤ a log n where a is chosen such that P
{
Ac

m+1

}
=

O(1/n). Let Bi be the event that Yi ≤ log3 n. Using E [Ym+1] = O(log n) and
Markov’s inequality, we have P

{
Bc

m+1

}
= O(1/ log2 n). Let Ci be the event that

the i-th edge causes the creation of a component that contains two cycles. Equiva-
lently, Ci is the event that the i-th edge connects two (not necessarily distinct) cyclic
components. Treating these events as sets, we obtain

Ci = (Ci ∩Ai ∩Bi) ∪ (Ci ∩Bc
i ∩Ai) ∪ (Ci ∩Ac

i)
⊆ (Ci ∩Ai ∩Bi) ∪Bc

i ∪Ac
i .

Since Ac
i and Bc

i are increasing events, then ∪m+1
i=1 Ac

i = Ac
m+1, and similarly,

∪m+1
i=1 Bc

i = Bc
m+1. Consequently,

P

{⋃

i

Ci

}
≤

(
m∑

i=1

P {Ci, Ai, Bi}
)

+ P
{
Bc

m+1

}
+ P

{
Ac

m+1

}

≤
(

m∑

i=1

P {Ci | Ai, Bi}
)

+ O(1/ log2 n) + O(1/n)

≤ m

(
(a log n)(log3 n)

n

)2

+ O
(
1/ log2 n

)
= O

(
1/ log2 n

)
,

as the maximum number of ‘bad’ vertices that the i-th edge can choose from is at
most Yi times Mi which is not more than a log4 n.

Recall that the hashing process Hash(n, s, m, κ) is divided into N := d s/m e
different stages where at each stage m bβn c keys are inserted into the hash table.
Consider only the first stage. Recall that the graph G does not fully represent the
hash table because first, the keys are inserted into the hash table without any delay,
while the edges are enqueued in Q for what might be a long time before they are
actually inserted into the graph G, and secondly, any edge that completes a cycle is
not added to the graph. For convenience, we will write G(m) to denote the graph G
at the end of the first stage, i.e., after having fully processed m edges, and G(m)+

to denote the complete graph of G(m) plus all dropped edges that complete cycles.

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 9

Observe that the undirected version of the graph G(m)+ is stochastically equivalent
to the random graph G(n,m). The following lemma shows that the dropped edges
of the whole hashing process are disjoint. For any multiset of edges E , and for any
vertex u in the graph, let V(u, E) be the multiset of all vertices v such that (u, v) ∈ E .
Let deg(u, E) = |V(u, E)| be the degree of u in E .

Lemma 7. Let D be the multiset of dropped edges during all stages of the hash-
ing process Hash(n, s, m, κ), where n, s and m are as defined in Theorem 1. Then
maxu deg(u,D) = 1, w.h.p.

Proof. Recall that the number of stages is N := d s/m e = O(log n). For i =
1, . . . , N , let Di be the multiset of all dropped edges in stage i. Since the dropped edges
are the ones that complete cycles, then Lemma 6 implies that E [|D1|] = O(log n),
and

P
{

max
u

deg(u,D1) > 1
}

= o(1/ log n) ,

because deg(u,D1) > 1 implies that the component containing u has more than one
cycle. Clearly,

∑
u deg(u,D1) ≤ 2 |D1|. Since we have n vertices in the graph, then

E [deg(u,D1)] = E [E [deg(u,D1) | |D1|]] ≤ 2E [|D1|] /n .

For i 6= j, let Ai,j be the event that there is a vertex u appearing in two dropped edges
in Di and Dj , i.e., there are vertices v and w such that (u, v) ∈ Di, and (u,w) ∈ Dj .
Since D1, . . . ,DN are independent and identically distributed, thence,

P
{

max
u

deg(u,D) > 1
}
≤ NP

{
max

u
deg(u,D1) > 1

}
+

(
N

2

)
P {A1,2}

≤ o(1) + N2n (P {deg(u,D1) ≥ 1})2
≤ o(1) + N2n (E [deg(u,D1)])2

≤ o(1) + N2n

(
2E [|D1|]

n

)2

= o(1) + O((log n)4/n) = o(1) .

Finally, we recall the following inequality.
Lemma 8 (Hoeffding [19]). Let S be a set of m balls where ball i has a value xi.

Let X1, . . . , Xν be the values of ν balls chosen from S independently and uniformly
at random without replacement. Let Y1, . . . , Yν be the values of ν balls chosen from S
independently and uniformly at random with replacement. Then for any continuous
convex function f , we have

E

[
f

(
ν∑

i=1

Xi

)]
≤ E

[
f

(
ν∑

i=1

Yi

)]
.

Proof of Theorem 1. Recall that G(m) denotes the graph G at the end of the
first stage, and G(m)+ denotes the complete graph of G(m) plus all dropped edges
that complete cycles. First of all, Lemma 7 says that the vertices of all dropped
edges of the whole hashing process Hash(n, s, m, κ) are distinct, w.h.p. That is, the
corresponding keys of these edges are inserted into distinct chains, or in other words,

10 TWO-WAY CHAINING WITH REASSIGNMENT

any chain harbors at most one key that corresponds to a dropped edge. Therefore,
upon termination of the hashing process, the dropped edges may contribute at most
one to the maximum chain length.

We shall prove that w.h.p., during any interval of time (measured with respect to
the number keys inserted) of length ν :=

⌊
n1/4

⌋
(at any stage), the queue Q must be

empty at least once, and no connected component is chosen more than twice. This
means that w.h.p., any set of requests that exist in the queue at some point of time
could have at most two requests for inserting edges in the same connected component,
that is, we could have at most two keys that are inserted into the same chain before
the final positions of the related keys are corrected. Assume this is true for the time
being. Then clearly the length of any chain in the hash table during the first stage is
not more than the out-degree of the corresponding vertex in G plus three: one for any
possible dropped edge contribution, and two for the two requests in the queue that
have chosen the same component. However, the maximum out-degree of G is ensured
to be one all the time. Hence, the maximum chain length at any point of time during
the first stage is at most 4, w.h.p. Since we follow the same strategy at each stage, it
is not difficult to see that the chain length increases by at most one per stage. Note
that over all stages, each chain has at most one dropped edge contribution and a
single component is present at most twice in the queue. Consequently, the maximum
chain length at any point of time during the hashing process is at most d s/m e + 3,
w.h.p., and hence the worst-case search time is at most 2 d s/m e + 6, w.h.p., as we
have to search two chains for each key.

Now we prove our assumption. We say “at time i” to mean at the insertion time
of the i-th key. Thus, an interval of time of length ν means a period of time into which
exactly ν keys are inserted. Let M be the size of the largest connected component in
G(m). Since β < 1/2, then by Lemma 5, P

{
M > 2γ−1 log n

}
= O(1/n).

Let Aij be the event that the j-th component is hit by the i-th request and is hit
at least twice more in the subsequent ν − 1 requests. Note that when the insertion
request at the front of the queue is being processed, the j-th component is fixed. Let
A = ∪i,jAij . Let Mij be the number of vertices in the j-th component just before
the i-th insertion. Thus P

{∃ i, j,Mij > 2γ−1 log n
} ≤ P{

M > 2γ−1 log n
}

= O(1/n).
Since we have fewer than m time intervals of length ν during the first stage, and at
most n connected components in G, then the binomial tail inequality yields that

P {A} ≤ P{
A ∩ [

M ≤ 2γ−1 log n
]}

+ P
{
M > 2γ−1 log n

}

≤ mn max
i,j
P

{
Aij ∩

[
M ≤ 2γ−1 log n

]}
+ O(1/n)

≤ mn max
i,j
P

{
Aij ∩

[
Mij ≤ 2γ−1 log n

]}
+ O(1/n)

≤ mn max
i,j
P

{
Aij |

[
Mij ≤ 2γ−1 log n

]}
+ O(1/n).

The probability that the i-th request hits the j-th component is at most 2Mij/n,
since there are 2 vertices involved in the request. The number of times that the j-the
component is hit in the subsequent ν−1 requests is distributed as Bin(2ν−2,Mij/n).

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 11

Thus, using P {Bin(n, p) ≥ 2} ≤ (np)2/2, we have

P {A} ≤ mn

(
4 log n

γn

)
P

{
Bin(2ν, 4γ−1 log n/n) ≥ 2

}
+ O(1/n)

≤ mn

(
4 log n

γn

)(
8ν log n

γn

)2

+ O(1/n)

= O

(
log3 n

n1/2

)
.

The event A refers to the first stage only. Multiplying the bound by the number
of stages N = O(log n), we can see that the probability that during some stage there
is a connected component which is chosen more than twice in some interval of time
of length ν goes to zero as n →∞.

Next, let [a, b] = {a, a + 1, . . . , b} where |b− a + 1| = ν be a time interval of
length ν, and let B be the event that [a, b] is the first interval of time of length ν
in which the queue Q is never empty. Observe that if B is true, then the queue
was empty at time a − 1. Let ea, . . . , eb be the edges associated with the ν requests
appended to Q during [a, b]. For i ∈ [a, b], let Ti be the computational time needed
for the algorithm to fully process the edge ei, that is, the number of edges traversed
or reversed during the whole process of serving the request, plus one if the edge is
inserted. Let Ri be the number of vertices in the connected component to which the
edge ei belongs. Thus, Ti ≤ 4Ri, for all i ∈ [a, b]. Using Chernoff’s bounding method
(see e.g., [19]), we see that for parameter λ > 0,

P {B} ≤ P {Ta > κ, Ta + Ta+1 > 2κ, . . . , Ta + · · ·+ Tb > κν}
≤ P {Ta + · · ·+ Tb > κν}
≤ P {Ra + · · ·+ Rb > κν/4}

≤ e−λκ ν/4 E

[
exp

(
b∑

i=a

λRi

)]
.

Recall that G(m)+ denotes the union of G(m) and the edges that completed cycles.
Suppose that we choose ν edges from the set of all m edges in the graph G(m)+

independently and uniformly without replacement. Let V1, . . . , Vν be the sizes of the
components containing these edges. Notice that V1, . . . , Vν stochastically dominate
Ra, . . . , Rb. On the other hand, suppose that we repeat the experiment of choosing ν
edges from the set of all m edges in the graphs G(m)+ independently and uniformly
but with replacement. Let V ∗

1 , . . . , V ∗
ν be the values of these edges which are plainly

independent and identically distributed. Thence, by Lemma 8, we see that

P {B} ≤ e−λκ ν/4 E

[
exp

(
ν∑

i=1

λVi

)]

≤ e−λκ ν/4 E

[
exp

(
ν∑

i=1

λV ∗
i

)]

= e−λκ ν/4
(
E

[
eλV ∗1

])ν

.

By definition, V ∗
1 is distributed as the size of the component containing a uni-

formly chosen edge of G(n,m). In distribution, this is the same as the size of the

12 TWO-WAY CHAINING WITH REASSIGNMENT

component containing the last edge inserted in G(n,m), which is in turn stochasti-
cally dominated by C(u) + C(v), where u and v are uniformly chosen vertices and
C(u) is the size of the component containing u in G(n,m − 1). Using Lemma 5 for
t ∈ [m],

P {V ∗
1 ≥ t} ≤ P {C(u) + C(v) ≥ t} ≤ 2P {C(u) ≥ t/2} ≤ 2

(
2 e−γ(t/2−1)

)
,

where γ = (1/2−β)2

2+4β > 0. Therefore,

E
[
eλV ∗1

]
≤ 4

m∑
t=1

eλte−γ(t/2−1) ≤ 4 eλ+γ/2
∞∑

t=0

e(λ−γ/2)t ≤ 4 eλ+γ/2

1− eλ−γ/2
,

provided that λ < γ/2. Finally, we get

P {B} ≤ e−λκ ν/4
(
E

[
eλV ∗1

])ν

≤ e−pν ,

where p := λκ/4 − λ − γ/2 + log
(
1− eλ−γ/2

) − log 4, which is positive if we choose
κ > 4 + 4

(−γ/2− log(1− eλ−γ/2) + log 4
)
/λ. For example, if we put λ = γ/4,

then κ = d−40 log(1− e−γ)/γ e will suffice. With this choice, and since there are
N = d s/m e stages, and in each stage there are at most m intervals of time of length
ν, we see that the probability that at some stage there is an interval of time of length
ν in which the queue is never empty is at most Nme−pν = o(1). Indeed, this is true
even if the interval is as short as 2 logp s = O(log n). The proof now is complete. ¤

Some Remarks.
1. The last step of the proof reveals that asymptotically almost surely the space

consumed by the queue is indeed O(log n), because the queue is always empty
at least once during any interval of O(log n) insertions.

2. Notice that as β approaches 1/2, γ goes to zero, and hence, the constant κ
increases to infinity.

3. As β increases to 1/2, the worst-case search time of our algorithm is close
to 4α + 6, w.h.p., where α := s/n is the load factor of hash table. This
performance can be beaten by other hashing algorithms when α is large
enough. For example, when α ≥ log n/ log log n, the classical hashing with
chaining where only a single uniform hash function is utilized achieves bet-
ter performance than our algorithm: the maximum search time is known
[27] to be at most α + Θ(

√
α log n), w.h.p. Also, when log2 log n ≤ α ≤

(1/3) log n/ log log n, the worst-case search time of greedy two-way chaining,
which is 2 log2 log n + 2α + O(1), w.h.p., is the best known [4]. However,
for α < log2 log n, our algorithm has the best worst-case search time among
all known hashing with chaining algorithms that have constant worst-case
insertion time.

4. We did not try to optimize the constant insertion time κ, or the total space
consumed by the algorithm. We believe that some aspects of the algorithm
can be modified to improve its performance by a constant factor. For example,
the use of the graph G is probably unnecessary, and one can implement the
operations on the graph directly on the hash table. It is also necessary to
generalize the algorithm for the dynamic case where deletions are allowed.

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 13

Appendix. In this appendix, we give the detailed pseudocode for the procedure
ConstantInsert. Each element of the queue is the 5-tuple [X, Root1, Root2,
IndexFrom, IndexTo] defined as follows:

X The pointer to the linked-list node that is currently in some chain of T .
Root1 Current computation of the root of vertex f(x)’s tree.
Root2 Current computation of the root of vertex g(x)’s tree.

IndexFrom If Root1 and Root2 are roots, then the new arc should point from IndexFrom
IndexTo If Root1 and Root2 are roots, then the new arc should point to IndexTo

The last two fields are computable from each other; so only four elements are actually
needed. Additionally, recall that X points to a structure that contains the key which
we will refer to as X.key.

Pseudocode 6 ConstantInsert(x, G, T)
1: Create new linked-list node, ∗X containing key x
2: Insert ∗X into T [f(x)]
3: Create new request, Rnew = [X, f(x), g(x), f(x), g(x)]
4: Append Rnew to Q
5: Zero

⌈
1
β

⌉
more elements of G′

6: i ← 1
7: repeat
8: i ← i + 1, R ← Q.Peek()
9: if P[R.Root1] 6= nil then

10: R.Root1 = P[R.Root1]
11: else if P[R.Root2] 6= nil then
12: R.Root2 = P[R.Root2]
13: else if R.Root1 = R.Root2 then
14: Q.Pop()
15: else
16: Y ← X[R.IndexFrom]
17: Link(R.IndexFrom, R.IndexTo, R.X)
18: if Y = nil then
19: Q.Pop() {This will happen once for every new arc in G.}
20: if |G| = bβn c then swap(G,G′)
21: else if f(Y.key) = R.IndexFrom then
22: R ← [Y, R.Root1, R.Root2, g(Y.key), f(Y.key)]
23: else
24: R ← [Y, R.Root1, R.Root2, f(Y.key), g(Y.key)]
25: end if
26: end if
27: until i = κ OR Q = ∅

14 TWO-WAY CHAINING WITH REASSIGNMENT

REFERENCES

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., John Wiley, New York, 2000.
[2] D. Angluin and L. G. Valiant, “Fast probabilistic algorithms for hamiltonian paths and match-

ings,” Journal of Computer and Systems Science, vol. 18, pp. 155–193, 1979.
[3] Y. Azar, A. Z. Broder, A. R. Karlin and E. Upfal, “Balanced allocations,” SIAM Journal on

Computing, vol. 29 (1), pp. 180–200, 2000. A preliminary version of this paper appeared in
Proceedings of the 26th ACM Symposium on Theory of Computing (STOC), pp. 593–602,
1994.

[4] P. Berenbrink, A. Czumaj, A. Steger, and B. Vöcking, “Balanced allocations: the heavily loaded
case,” in: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC),
pp. 745–754, 2000.

[5] A. Broder and M. Mitzenmacher, “Using multiple hash functions to improve IP lookups,” in:
Proceedings of the IEEE INFOCOM 2001 Conference, Anchorage, Alaska USA , April
2001. Full version available as Technical Report TR–03–00, Department of Computer Sci-
ence, Harvard University, Cambridge, MA, 2000.

[6] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for distributed hash
tables,” in: Proceedings of the 2nd International Workshop on Peer-to-Peer Systems, pp.
80–87, 2003.

[7] A. Czumaj, F. Meyer auf der Heide, and V. Stemann, “Contention resolution in hashing based
shared memory simulations,” SIAM Journal on Computing, vol. 29, No. 5, pp. 1703–1739,
2000.

[8] A. Czumaj and V. Stemann, “Randomized allocation processes,” Random Structures and Al-
gorithms, vol. 18, Issue 4, pp. 297–331, June 2001.

[9] L. Devroye, “Branching processes and their applications in the analysis of tree structures and
tree algorithms,” in: Probabilistic Methods for Algorithmic Discrete Mathematics, ed. M.
Habib, C. McDiarmid, J. Ramirez-Alfonsin and B. Reed, pp. 249–314, 1998.

[10] L. Devroye and P. Morin, “Cuckoo hashing: further analysis,” Information Processing Letters,
vol. 86, pp. 215–219, 2004.

[11] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. Tarjan,
“Dynamic perfect hashing: upper and lower bounds,” SIAM Journal on Computing, vol.
23 (4), pp. 738–761, 1994. A preliminary version appeared in: Proceedings of the 29th IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 524–531, 1988.

[12] M. Dietzfelbinger and F. Meyer auf der Heide, “A new universal class of hash functions and
dynamic hashing in real time,” in: Proceedings of the 17th International Colloquium on
Automata Languages and Programming, LNCS 443, Springer-Verlag, pp. 6–19, 1990.

[13] M. Dietzfelbinger and F. Meyer auf der Heide, “High performance universal hashing, with
applications to shared memory simulations,” in: Data Structures and Efficient Algorithms,
LNCS 594, Springer-Verlag, pp. 250–269, 1992.

[14] P. Erdös, “Some remarks on the theory of graphs,” Bulletin of the American Mathematical
Society, vol. 53, pp. 292–294, 1947.

[15] P. Erdös and A. Rényi, “On the evolution of random graphs,” Publ. Math. Ins. Hunger. Acad.
Sci., Vol. 5, PP. 17-61, 1960.

[16] M. Fredman, J. Komlós, E. Szemerédi, “Storing a sparse table with O(1) worst case access
time,” Journal of the ACM, vol. 31, pp. 538–544, 1984.

[17] H. Gajewska and R. E. Tarjan, “Deques with heap order,” Information Processing Letters, vol.
22(4), pp. 197–200, 1986.

[18] G. H. Gonnet, “Expected length of the longest probe sequence in hash code searching,” Journal
of the ACM, vol. 28, pp. 289–304, 1981.

[19] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the
American Statistical Association, vol. 58, pp. 13–30, 1963.

[20] S. Janson, D. E. Knuth, T. ÃLuczak, and B. Pittel, “The birth of the giant component,” Random
Structures and Algorithms, vol. 4 (3), pp. 233–358, 1993.

[21] S. Janson, T. ÃLuczak and A. Ruciński, Random Graphs, John Wiley & Sons, New York, 2000.
[22] R. M. Karp, “The transitive closure of a random digraph,” Random Structures and Algorithms,

vol. 1, PP. 73-93, 1990.
[23] E. Malalla, Two-way Hashing with Separate Chaining and Linear Probing, Ph.D. thesis, School

of Computer Science, McGill University, 2004.
[24] M. Mitzenmacher, A. Richa, and R. Sitaraman, “The power of two random choices: A survey

of the techniques and results,” in: Handbook of Randomized Computing, (P. Pardalos, S.
Rajasekaran, and J. Rolim, eds.), pp. 255–305, 2000.

[25] R. Pagh, “On the cell probe complexity of membership and perfect hashing,” in: Proceedings

K. DALAL, L. DEVROYE, E. MALALLA, and E. MCLEISH 15

of 33rd ACM Symposium on Theory of Computing (STOC), pp. 425–432, 2001.
[26] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in: Proceedings of the European Symposium on

Algorithms, LNCS 2161, Springer-Verlag, pp. 121–133, 2001. A previous version is available
as BRICS Report Series RS–01–32, Department of Computer Science, University of Aarhus,
2001.

[27] M. Raab and A. Steger, ““Balls into bins”—a simple and tight analysis,” in: Proceedings of the
2nd Workshop on Randomization and Approximation Techniques in Computer Science,
vol. 1518, Lecture Notes in Computer Science, Springer-Verlag, pp. 159–170, 1998.

[28] B. Vöcking, “How asymmetry helps load balancing,” in: Proceedings of the 40th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pp. 131–141, 1999.

