King Fahd University of Petroleum & Minerals Information & Computer Science Department

ICS 410 Programming Languages

Assignment 03

Due Date	Weight	Semester	Section
2 nd May 2007	5%	062	2

In this homework, you are asked to implement some Prolog functors (or predicates) and execute them using a Prolog interpreter.

For all the given problems your Prolog code should at least pass those tests given in the problems; of course, you may use more complicated tests to guarantee your function works correctly.

1. Write the following statements in Prolog:

- a) "The product of any integer I and 1 is I"
- b) "The volume of a container is the product of its length L, width W and height H.
- c) "If Ali is a male and Ali is Ahmad's parent then Ali is Ahmad's father."
- 2. An instructor assigns grades to his students according to the following table:

Score	≥90	≥85	≥75	≥70	≥ 65	≥ 60	≥55	≥45	≤44
Grade	A+	Α	B+	В	C+	С	D+	D	F

Write a functor assignGrade(score, Grade) that takes a student's score and returns his letter grade.

Test Cases

<pre>?- assignGrade(92,Grade).</pre>	Grade = A+
<pre>?- assignGrade(75,Grade).</pre>	Grade = B+
<pre>?- assignGrade(-70,Grade).</pre>	program error: invalid grade.

3. Define a functor product(Num, Pr) that computes the product of the integers $1*2*3* \dots * Num$, where $Num \ge 1$.

Test Cases

?-	<pre>product(1,A).</pre>	А	=	1
?-	product(5,A).	Α	=	120

4. Define a functor *xPowery* (*X*, *Y*, *Power*) which computes the value X^{Y} (X to the Power Y). You should not use Prolog Power function (**).

Test Cases

xPowery(2,0,Power).	Power	=	1
xPowery(4,2,Power).	Power	=	16
xPowery(3,3,Power).	Power	=	27

5. Define a functor *maximum*(*L*,*Max*). The functor will succeed if Max is the maximum integer in the list L, otherwise it will fail.

Test Cases	
<pre>maximum([], Max).</pre>	Max = 'No element in the list'
<pre>maximum([31,33,20,10],20).</pre>	no
<pre>maximum([31,33,20,10],33).</pre>	yes
<pre>maximum([313,334,202,101],Max).</pre>	Max = 334

6. Define the following two functors:

- a. int2List that converts an integer into a list containing the digits of the integer in order.
- b. list2Int that collapses a list of integers into an integer.

Test cases

?- int2List(1,A).	A = [1]
?- int2List(354,A).	A = [3,5,4]
?- int2List(72869,A).	A = [7,2,8,6,9]
?- list2Int([1],A).	A = 1
?- list2Int([3,5,4],A).	A = 354
?- list2Int([7,2,8,6,9],A).	A = 72869

7. Define a functor *drop(X, L, NL)* with three arguments, an element X and two lists L and NL. NL is constructed from the elements of L by removing **all** occurrences of X if it is there.

Test Cases

drop(35,	[40,35,30,35,20], NS).	NS	=	[40,30,20]
drop(50,	[40,35,30,20], NS).	NS	=	[40,35,30,20]

Submission Requirements

- 1. Submit a CD (or a floppy disk) containing 7 Prolog files (Q1.pl, assignGrade.pl, product.pl, xPowery.pl, maximum.pl, reverse.pl,.....) containing the Prolog code for the seven requested problems. Make sure that your CD/floppy is virus-free and has your name and ID # written on it
- 2. Submit a printed report in MS Word that includes the following:
 - Course title, number, and section number
 - Your Name and ID number
 - The statement of the problem (The text in the previous two pages.)
 - A list of all the functors you developed, 1 through 7 with some description of how they. This will be the documentation of your functors.

Important Notice

- 1. No assignment will be accepted after the due date
- 2. Any students who cheat from any other students (even for one problem) will get Zero (0) in the whole assignment.
- 3. Only working (or partially working) functors will be graded. Do not submit a program that does not run.
- 4. The assignment will be graded out of (**50**) points distributed as follows:
 - Problems (1) (4): 5 points each
 (3 for the correct code, 1 for the documentation, and 1 for the execution with test cases)
 - Problems (5) (7): 10 points each
 (7 for the correct code, 1 for the documentation, and 2 for the execution with test cases)