
ICS 121 Lecture Notes

Topic 7
Design

Topic 7
Design

1

ICS 121

Basic Design Concepts

Requirements
Change

Validation

Revalidation

Validation

Verification

Testing

Requirements Analysis +
Specification

DesignHow ?

Operation and
Maintenance

Implementation and
Integration

Topic 7
Design

2

ICS 121

Relation to Other Phases

● Requirements Specification
– Specifies what should be accomplished, but not how

– But how do you avoid design bias?
• requirements hierarchy

• user model

– User interfaces partially specified, but further decisions may be made
during design

● Implementation
– Design stops and coding begins when design specifications are

sufficient for coding assignments.

• can be given to programmers unaware of the overall architecture

Define the components and the interfaces between them

Topic 7
Design

3

ICS 121

Goals and Objectives

● Develop a coherent representation of software that will
satisfy the requirements

● (Identify inadequacies in the requirements)

● Develop a review plan that, when carried out, will yield
confidence in the design

● Develop a validation test plan for determining if
implementation meets design

Topic 7
Design

4

ICS 121

The Design Process

● Design process developes several models of the system
at different levels of abstraction

– Starting point is an informal design
– Adding information to make it consistent and complete
– Feedback to earlier design models to be improved

Informal
design
outline

Informal
design

More formal
design

Finished
design

Topic 7
Design

5

ICS 121

Design Activities

– Architectural design
• Identification of the sub-systems and abstract specification of their services

and their constraints

– Abstract specification
• For each sub-system, an abstract specification is produced

– Interface design
• For each sub-system, its interface with other sub-systems is designed and

documented (e.g. using formal methods)

– Component design
• Services are allocated to different components and the interfaces of these

components are designed

– Data structure design
• The data structures used in the system implementation are designed in detail

and specified

– Algorithm design
• The algorithms used to provide services are designed in detail and specified

Topic 7
Design

6

ICS 121

Design Activities - 2

Requirements
specification

Architectural
design

Abstract
specification

Interface
design

Component
design

Data
structure
design

Algorithm
design

System
architecture

Software
specification

Interface
specification

Component
specification

Data structure
specification

Algorithm
specification

ICS 121 Lecture Notes

Topic 7
Design

Topic 7
Design

7

ICS 121

Top-Down Design

● One way of tackling a design problem:
– Recursively partitioning the problem into sub-problems until tractable

sub-problems are identified
– Valid approach especially where design components are tightly coupled

System level

Sub-system
 level

Topic 7
Design

8

ICS 121

Products

● Refined requirements specification

● Documentation of decisions and rationale

● Data dictionary of all defined objects

● Description of program to be constructed
– software architecture described as a decomposition diagram

– abstract module interface specifications

– internal module designs: data and algorithm descriptions

● Integration test plan

Topic 7
Design

9

ICS 121

Desirable Characteristics

● Uniform and complete

● Rigorous and confirmable

● Supportable by tools

● Desensitized to change

● Accommodates independent development

Topic 7
Design

10

ICS 121

Common Problems

● Depth-first design: only partial satisfaction of
requirements

● Failure to consider potential changes

● Too detailed: overconstrains implementation

● Ambiguous: misinterpreted during implementation

● Undocumented: designers become essential

● Inconsistent: system cannot be integrated

Topic 7
Design

11

ICS 121

Abstraction

● Abstraction is a primary guiding design principle

● Intellectual tool that allows us to focus on important,
inherent properties and suppress unnecessary detail

● Permits separation of conceptual aspects of system
from the implementation details

● Provides a model of behavior

● Allows postponement of design decisions
– external/functional

– structural/architectural

– representational/algorithmic

Topic 7
Design

12

ICS 121

Abstraction - 2

● Three basic abstraction mechanisms:
– procedural abstraction

• specification describes input/output

• implementation describes algorithm

• types: structural

– data abstraction
• specification describes attributes, values, properties, operations

• implementation describes representation and implementation

• types: compound data structure, abstract data type

– control abstraction
• specification describes desired effect

• implementation describes mechanism

• types: selection, repetition

ICS 121 Lecture Notes

Topic 7
Design

Topic 7
Design

13

ICS 121

Information Hiding
● Each design unit hides internal details of processing

activities
● Design units communicate only through well-defined

interfaces (as opposed, e.g. to global variables)
● Each design unit is specified by as little information as

possible
● If internal details change, client units should need no

change
● Sample things to modularize and encapsulate

– Abstract data types
– Algorithms (e.g., sorting)
– Input and output formats
– Processing sequence
– Machine dependencies (e.g., character codes)
– Policies (e.g. when and how to do garbage collection)

Topic 7
Design

14

ICS 121

Cohesion and Coupling

● Cohesion: a design unit has high cohesion if all its
elements are strongly related

• coincidental: multiple, completely unrelated actions
• logical: series of related actions selected by parameter
• temporal: series of actions related in time
• procedural: series of actions sharing sequence of steps
• communicational: procedural cohesion but on the same data
• informational: series of independent actions on the same data
• functional: exactly one action

● Coupling: a decomposition has low coupling if the
design units are not strongly dependent on each other

• content: one directly references content of another
• common: both have access to same global data
• control: one passes an element of control to another
• stamp: one passes a data structure to another, which only uses part
• data: one passes only homogeneous data items

Topic 7
Design

15

ICS 121

Modules vs. Sub-systems

● Sub-system
– Is a system in its own right whose operation does not depend on the

services provided by other sub-systems
– Are composed of modules
– Have defined interfaces which are used for communication with other

sub-systems

● Module
– Is a system component that provides one or more services to other

modules
– It is not normally considered to be an independent system

● Both
– Encapsulate the representation of an abstraction
– Hide a design decision, unnecessary details, a secret, implemention

Topic 7
Design

16

ICS 121

Module Interfaces

● Imports (Uses)
– services the module requests from other modules

● Exports (Public)
– services the module provides to other modules
– what should be known externally

● Discriminatory use
– not all uses will require (or be granted) the same services

● Negotiating interface specifications
– abstraction implies one specification with many possible

implementations
– determine potential services for all possible uses
– determine likely usage patterns and purposes
– determine feasibility
– anticipate potential changes

Topic 7
Design

17

ICS 121

What is a Module ?

● Various attempts to define this term, e.g.
– [Stevens/Myers/Constantine, 1974]

 "A set of one or more contiguous program statements having a name by which
other parts of the system can invoke it, and preferably having its own distinct
set of variable names."

Problems:
• assemler macros, header files (e.g., in C, C++), Ada packages, etc. not included

in this definition

– [Yourdon/Constanine, 1979]

 "A module is a lexically contiguous sequence of program statements,
bounded by boundary elements (e.g. begin...end , {...}), having an
aggregate identifier"

➪ Discussion in textbook p. 139 ff.

Topic 7
Design

18

ICS 121

A sample Module description

Sample module description using a textual design notation:

module X
uses Y imports (B,C)

selective import of B and C from module Y
exports var A:integer;
 type B: array (1..10) of real;
 procedure C(.....);

 optional natural language description of what A, B, and C
 actually are, possible constraints, etc. that clients need to
 know.
implementation
 if needed, here are general comments about the rationale
 of the modularization, hints on the implementation, etc.
end X

ICS 121 Lecture Notes

Topic 7
Design

Topic 7
Design

19

ICS 121

Levels of Cohesion

Functional cohesion

Informational cohesion

Communicational cohesion

Procedural cohesion

Temporal cohesion

Logical cohesion

Coincidental cohesion

(Good)

(Bad)

Topic 7
Design

20

ICS 121

Levels of Coupling

 Data coupling

Stamp coupling

Control coupling

Common coupling

Content coupling

(Good)

(Bad)

Topic 7
Design

21

ICS 121

Modules in the Lifecycle

● Problem Definition (Scenarios & Mockup’s)
– Task Description

● Requirements
– UML Class Diagram

● Implementation
– Function, Subroutine, (Class, Method, Macro)

● Maintenance
– Test Case

● Operation
– End User Macro, Script

Topic 7
Design

22

ICS 121

Hierarchy: Uses

● Definition: a uses b if there exist situations in which the
correct functioning of a depends on the ability of a
correct implementation of b

– Allow a to use b when:
• a is simpler because it uses b
• b is not substantially more complex because it is not allowed to use a
• there is a useful subset containing b and not a
• there is no conceivably useful subset containing a but not b
• What do you do with recursion? Group a and b as a single entity in the uses

relation

● System structure can be specified by the uses relation
– Level 0 is the set of all programs that use no other program
– Level i (i > 0) is the set of all programs that use at least one program on

level i -1 and no program at level • i.

● The uses relation should be acyclic

Topic 7
Design

23

ICS 121

Hierarchy: Uses
28a

M1

M1,1 M1,2 M1,3

M1,2,2

M2

M1,2,1

M4

M3

uses

M1,2,1,1

le
ve

ls
 o

f a
bs

tra
ct

io
n

Topic 7
Design

24

ICS 121

Hierarchy: Is-Composed-Of

● Definition: a is-composed-of b if b is a component of a
and encapsulated within it

● System structure can be specified by the
 is-composed-of relation where

– non-terminals are virtual code

– terminals are the only units represented by code

● In such a case the uses relation is specified over the
set of terminals only

● The is-composed-of relation should be acyclic

ICS 121 Lecture Notes

Topic 7
Design

Topic 7
Design

25

ICS 121

Hierarchy: Is-Composed-Of
29a

M1

M2 M3 M4

M5 M6M7 M8 M9

is-composed-of

Topic 7
Design

26

ICS 121

Integration Test Plan

● Developed as part of (architectural) design
● Test plan to exercise module interactions

– actual test data and expected results for each potential module
interaction

– order of test executions
– completion criteria

• simple coverage (one test per interaction)
• input/output coverage (range of values)
• data flows (flows from user to used and back)

● Basic goal is to test how modules interact with each
other and with data under the assumption that they
have passed module testing

Topic 7
Design

27

ICS 121

Integration Testing

● Testing based on integration test plan after module
testing

● Integration is the process by which modules are
aggregated to create larger components

● Integration may be determined by uses hierarchy

● Integration testing examines each combination to
determine whether it is also correct or to find defects in
the interaction between “correct” components

Ensures modules make compatible assumptions

Topic 7
Design

28

ICS 121

Integration Test Plan Process

– For a given module interaction:

• Design test cases to test that interaction

• design typical test case

• design test cases specific to this interaction

• design special and boundary value test cases

• For each test case, provide the "values" of parameters and any environment
(e.g., persistent data) required

• Plan the order of the test cases for this interaction

• initialize, set-up, process, wrap-up

• Describe any stubs or drivers required for this interaction

– Plan the order of integration testing

• top-down

• bottom-up

• combination

