

Build Your Own Database Driven Website Using PHP & MySQL
(First 4 Chapters)

Thank you for downloading the first four chapters of Kevin Yank’s “Build Your Own Database Driven Website
Using PHP & MySQL”.

This excerpt encapsulates the Summary of Contents, Information About the Author and SitePoint.com, Table
of Contents, Introduction, and the first four chapters of the book.

We hope you find this information useful in evaluating the book.

For more information visit SitePoint.com

Build Your Own Database Driven Website Using PHP & MySQL

i

http://sitepoint.com/books/?bookid=More

Summary of Contents of this Excerpt

Introduction.. 1
1 Installation.. 5
2 Getting Started with MySQL ... 16
3 Getting Started with PHP .. 23
4 Publishing MySQL Data on the Web .. 55

Summary of Additional Contents of the Book

5 Relational Database Design..
6 A Content Management System ...
7 Content Formatting and Submission ...
8 MySQL Administration ..
9 Advanced SQL ...
10 Advanced PHP ...
11 Storing Binary Data in MySQL..
12 Cookies and Sessions in PHP ..
Appendix A: MySQL Syntax..
Appendix B: MySQL Functions ..
Appendix C: MySQL Column Types...
AppendixD: PHP Functions for Working with MySQL..

Build Your Own Database Driven Website Using PHP & MySQL

ii

Build Your Own Database Driven Website Using PHP & MySQL
by Kevin Yank

Copyright © 2002 SitePoint Pty. Ltd. All Rights Reserved

Editor: Georgina Laidlaw
Cover Design: Alex Walker
Printing History: August 2001 First Edition
 October 2001 Minor fixes

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein. However,
the information contained in this book is sold without warranty, either express or implied. Neither the
authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or by the software or hardware
products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only in an
editorial fashion and to the benefit of the trademark owner with no intention of infringement of the
trademark.

Published by SitePoint Pty. Ltd.

Suite 6, 50 Regent Street Richmond
VIC Australia 3121.

Web: www.sitepoint.com
Email: editor@sitepoint.com

ISBN 0-9579218-0-2

Printed and bound in the United States of America

Build Your Own Database Driven Website Using PHP & MySQL

iii

http://www.sitepoint.com/
mailto:business@sitepoint.com

About the Author

Kevin Yank is the Technical Content Director for SitePoint.com, author of many well received tutorials and
articles, and editor of the SitePoint Tech Times, an extremely popular technically-oriented email newsletter
for Web Developers.

Before graduating from McGill University in Montreal with a Bachelor of Computer Engineering, Kevin was
not only a budding Web Developer himself, but also an active advisor for the Sausage Software Web
Development Forums and writer of several practical guides on advanced HTML and JavaScript.

These days, when he’s not discovering new technologies, writing books, or catching up on sleep, Kevin can
be found helping other up-and-coming Web Developers in the SitePoint Forums
(www.sitepointforums.com).

About SitePoint.com

SitePoint.com is an online community and content-based resource site for Web Developers. At the time of
printing this book, SitePoint.com registered over 2.6 million page views per month, boasted more than
80,000 newsletter subscribers and over 11,000 active Community Forum members.

Providing regular cutting-edge articles, in-depth product reviews, step-by-step tutorials, practical advice
and a vibrant community, SitePoint.com is one of the most comprehensive sites in the world for resources
related to building and growing a successful Website.

Visit SitePoint at www.sitepoint.com.

Build Your Own Database Driven Website Using PHP & MySQL

iv

Table of Contents

Introduction 1
Who Should Read this Book 1
What's in this Book 1
Code archive 3
Your Feedback 4

1 Installation 5
Welcome to the Show 5
Windows Installation 5

Installing MySQL 5
Installing PHP 7

Installing under Linux 8
Installing MySQL 9
Installing PHP 11

Post-Installation Setup Tasks 12
If Your Web Host Provides PHP and MySQL 13
Your First PHP Script 14
Summary 15

2 Getting Started with MySQL 16
An Introduction to Databases 16
Logging On to MySQL 17
So what's SQL? 18
Creating a Database 18
Creating a Table 18
Inserting Data into a Table 20
Viewing Stored Data 20
Modifying Stored Data 22
Deleting Stored Data 22
Summary 22

3 Getting Started with PHP 23
Introducing PHP 23
Basic Syntax and Commands 24
Variables and Operators 25
User Interaction and Forms 25
Control Structures 27

Build Your Own Database Driven Website Using PHP & MySQL

v

Multi-Purpose Pages 29
Summary 31

4 Publishing MySQL Data on the Web 32
A Look Back at First Principles 32
Connecting to MySQL with PHP 33
Sending SQL Queries with PHP 34
Handling SELECT Result Sets 35
Inserting Data into the Database 36
A Challenge 38
Summary 38
"Homework" Solution 39

Build Your Own Database Driven Website Using PHP & MySQL

vi

 Introduction

Introduction

On the Web today, content is king. Once you’ve mastered HTML and learned a few neat tricks in JavaScript
and Dynamic HTML, you can probably build a pretty impressive-looking Web site design. But then comes
the time to fill that fancy page layout with some real information. Any site that successfully attracts repeat
visitors has to have fresh and constantly-updated content. In the world of traditional site building, that
means HTML files—and lots of ‘em.

The problem is that, more often than not, the people who provide the content for a site are not the same
people who handle its design. Oftentimes, the content provider doesn’t even know HTML. How, then, is the
content to get from the provider onto the Web site? Not every company can afford to staff a full-time
Webmaster, and most Webmasters have better things to do than copying Word files into HTML templates
anyway.

Maintenance of a content-driven site can be a real pain, too. Many sites (perhaps yours?) feel locked into a
dry, outdated design because rewriting those hundreds of HTML files to reflect a new design would take
forever. Server-side includes (SSI’s) can help alleviate the burden a little, but you still end up with hundreds
of files that need to be maintained should you wish to make a fundamental change to your site.

The solution to these headaches is database-driven site design. By achieving complete separation between
your site’s design and the content you want to present, you can work with each without disturbing the other.
Instead of writing an HTML file for every page of your site, you only need to write a page for each kind of
information you want to be able to present. Instead of endlessly pasting new content into your tired page
layouts, create a simple content management system that allows the writers to post new content themselves
without a lick of HTML!

In this book, I'll provide you with a hands-on look at what’s involved in building a database-driven Web
site. We’ll use two tools for this, both of which may be new to you: the PHP scripting language and the
MySQL relational database management system. If your Web host provides PHP and MySQL support,
you’re in great shape. If not, we’ll be looking at the set-up procedures under Linux and Windows, so don’t
sweat it.

Who Should Read this Book
This book is aimed at intermediate or advanced Web designers looking to make the leap into server-side
programming. You’ll be expected to be comfortable with simple HTML, as I’ll be making use of it without
much in the way of explanation. A teensy bit of JavaScript may serve us well at some point as well, but I’ll be
sure to keep it simple for the uninitiated.

By the end of this book, you can expect to have a grasp of what’s involved in setting up and building a
database-driven Web site. If you follow the examples, you’ll also learn the basics of PHP (a server-side
scripting language that allows you to do a lot more than access a database easily) and Structured Query
Language (SQL – the standard language for interacting with relational databases) as supported by MySQL,
one of the most popular free database engines available today. Most importantly, you’ll come away with
everything you need to get started on your very own database-driven site in no time!

What's in this Book
This book comprises the following 12 chapters. Read them in order from beginning to end to gain a complete
understanding of the subject, or skip around if you need a refresher on a particular topic.

The chapters contained in this document are:

Chapter 1: Installation
Before you can start building your database-driven Web presence, you must first ensure that you have the
right tools for the job. In this first chapter, I'll tell you where to obtain the two essential components you'll
need: the PHP scripting language and the MySQL database management system. I'll step you through the

Build Your Own Database Driven Website Using PHP & MySQL

1

 Introduction

set-up procedures on both Windows and Linux, and show you how to test that PHP is operational on your
Web server.

Chapter 2: Getting Started with MySQL
Although I'm sure you'll be anxious to get started building dynamic Web pages, I'll begin with an
introduction to databases in general, and the MySQL relational database management system in particular.
If you've never worked with a relational database before, this should definitely be an enlightening chapter
that will whet your appetite for things to come! In the process, we'll build up a simple database to be used in
later chapters.

Chapter 3: Getting Started with PHP
Here's where the fun really starts. In this chapter, I'll introduce you to the PHP scripting language, which can
be used to easily build dynamic Web pages that present up-to-the-moment information to your visitors.
Readers with previous programming experience will probably be able to get away with a quick skim of this
chapter, as I explain the essentials of the language from the ground up. This is a must-read chapter for
beginners, however, as the rest of this book relies heavily on the basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web
In this chapter we bring together PHP and MySQL, which you'll have seen separately in the previous two
chapters, to create some of your first database-driven Web pages. We'll explore the basic techniques of using
PHP to retrieve information from a database and display it on the Web in real time. I'll also show you how to
use PHP to create Web-based forms for adding new entries to, and modifying existing information in, a
MySQL database on-the-fly.

The other chapters included in the full print version of the book include:

Chapter 5: Relational Database Design
Although we'll have worked with a very simple sample database in the previous chapters, most database-
driven Web sites require the storage of more complex forms of data than we'll have dealt with so far. Far too
many database-driven Web site designs are abandoned midstream, or are forced to start again from the
beginning, because of mistakes made early on, during the design of the database structure. In this critical
chapter, I'll teach the essential principles of good database design, emphasizing the importance of data
normalization. If you don't know what that means, then this is definitely an important chapter for you to
read!

Chapter 6: A Content Management System
In many ways the climax of the book, this chapter is the big payoff for all you frustrated site builders who
are tired of updating hundreds of pages whenever you need to make a change to a site's design. I'll walk you
through the code for a basic content management system that allows you to manage a database of jokes,
their categories, and their authors. A system like this can be used to manage simple content on your Website,
and with a few modifications you should be able to build a Web administration system that will have your
content providers submitting content for publication on your site in no time - all without having to know a
shred of HTML!

Chapter 7: Content Formatting and Submission
Just because you're implementing a nice, easy tool to allow site administrators to add content to your site
without their knowing HTML, doesn't mean you have to restrict that content to plain, unformatted text. In
this chapter, I'll show you some neat tweaks you can make to the page that displays the contents of your
database – tweaks that allow it to incorporate simple formatting such as bold or italicized text, among other
things. I'll also show you a simple way to safely make a content submission form directly available to your
content providers, so that they can submit new content directly into your system for publication, pending an
administrator's approval.

Chapter 8: MySQL Administration
While MySQL is a good, simple database solution for those who don't need many frills, it does have some
complexities of its own that you’ll need to understand if you're going to rely on a MySQL database to store
your content. In this section, I'll teach you how to perform backups of, and manage access to, your MySQL

Build Your Own Database Driven Website Using PHP & MySQL

2

 Introduction

database. In addition to a couple of inside tricks (like what to do if you forget your MySQL password), I'll
explain how to repair a MySQL database that has become damaged in a server crash.

Chapter 9: Advanced SQL
In chapter 8 we saw what was involved in modeling complex relationships between pieces of information in
a relational database like MySQL. Although the theory was quite sound, putting these concepts into practice
requires that you learn a few more tricks of Structured Query Language. In this chapter, I'll cover some of
the more advanced features of this language to get you efficiently juggling complex data like a pro.

Chapter 10: Advanced PHP
PHP lets you do a lot more than just retrieve, display, insert, and update information stored in a MySQL
database. In this chapter, I’ll give you a peek at some other interesting things you can do with PHP, such as
server-side includes, handling file uploads, and sending email. Of course, as we’ll see, these features are
really useful for improving the performance and security of your database-driven site, as well as sending
feedback to your visitors.

Chapter 11: Storing Binary Data in MySQL
Some of the most interesting applications of database-driven Web design include some juggling of binary
files. Online file storage services like the now-defunct iDrive, are prime examples, but a system as simple as a
personal photo gallery can benefit from storing binary files (e.g. pictures) in a database for retrieval and
management on the fly. In this chapter, we develop a very simple online file storage and viewing system and
learn the ins and outs of working with binary data in MySQL.

Chapter 12: Cookies and Sessions in PHP
One of the most hyped new features in PHP4 is built-in support for sessions. But what are sessions? How are
they related to cookies, a long-suffering technology for preserving stored data on the Web? What makes
persistent data so important in current ecommerce systems and other Web applications? This chapter
answers all those questions by explaining how PHP supports both cookies and sessions, and exploring the
link between the two. At the end of this chapter, we’ll develop a simple shopping cart system to demonstrate
their use.

Code Archive
As you progress through the text, you’ll note a number of references to the code archive. Located at
http://sitepoint.com/books/?bookid=More, the Web site for this book contains not only an archive
of all the code presented within this text, but also errata, updates, and information about other SitePoint
publications.

The Book
The four chapters contained in this document are only the first part of my book “Build Your Own Database
Driven Website Using PHP & MySQL”.

The book contains eight more chapters that cover advanced database concepts, the design of a complete
content management system, MySQL server administration, and much, much more!

It also includes a complete set of appendices, plus a FREE download of the code archive for all the examples
demonstrated.

Put simply, this is the best desk reference for PHP and MySQL Web development currently available…

For more information visit SitePoint.com

Build Your Own Database Driven Website Using PHP & MySQL

3

http://sitepoint.com/books/?bookid=More

 Introduction

Your Feedback
If you have a question about any of the information covered in this book, your best chance of a quick
response is to post your query in the SitePoint.com Forums (www.sitepointforums.com).

And so, without further ado, let's get started!

Build Your Own Database Driven Website Using PHP & MySQL

4

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

5

1 Installation

Welcome to the Show
Hi there and welcome to the first book in SitePoint.com’s Practical Guide series! Over the course of this book,
it will be my job to guide you as you take your first steps beyond the HTML-and-JavaScript world of client-
side site design. Together we’ll explore what it takes to build the kind of large, content-driven sites that are
so successful today, but which can be a real headache to maintain if they aren’t done right.

Before we get started, you need to gather together the tools you’ll need for the job. In this first chapter, I'll
guide you as you download and set up the two software packages you’ll need: PHP and MySQL.

PHP is a server-side scripting language. You can think of it as a "plug-in" for your Web server that will allow
it to do more than just send plain Web pages when browsers request them. With PHP installed, your Web
server will be able to read a new kind of file (called a PHP script) that can do things like retrieve up-to-the-
minute information from a database and insert it into a Web page before sending it to the browser that
requested it. PHP is completely free to download and use.

To retrieve information from a database, you first need to have a database. That’s where MySQL comes in.
MySQL is a relational database management system, or RDBMS. Exactly what role it plays and how it works
we’ll get into later, but basically it’s a software package that is very good at the organization and
management of large amounts of information. MySQL also makes that information really easy to access with
server-side scripting languages like PHP. MySQL is released under the GNU General Public License (GPL),
and is thus free for most uses on all of the platforms it supports. This includes most Unix-based platforms,
like Linux and even Mac OS X, as well as Windows 9x/ME/NT/2000.

If you’re lucky, your current Web host may already have installed MySQL and PHP on your Web server for
you. If that’s the case, much of this chapter will not apply to you, and you can skip straight to the section
entitled "If Your Web Host Provides PHP and MySQL" to make sure your setup is ship shape.

Everything we’ll discuss in this book may be done on a Windows- or Unix-based server. The installation
procedure will differ in accordance with the type of server you have at your disposal. The following two
sections deal with installation on a Windows-based Web server, and installation under Linux (and other
Unix-based platforms), respectively. Unless you’re especially curious, you should only need to read the
section that applies to you.

Windows Installation

Installing MySQL
As I mentioned above, MySQL may be downloaded free of charge. Simply proceed to
http://www.mysql.com/downloads/ and choose the recommended stable release (as of this writing, it
is MySQL 3.23). Under the heading of Standard binary (tarball) distributions (which basically means the
program doesn't need to be compiled, and is ready to run once you download it), find and click Windows
95/98/NT/2000 (Intel). If you're on a high-speed connection, you'll probably want to check out one of the
download mirrors listed at http://www.mysql.com/downloads/mirrors.html to get a reasonable
download speed. After downloading the file (it's about 12MB as of this writing), unzip it and run the
setup.exe program contained therein.

Once installed, MySQL is ready to roll (barring a couple of configuration tasks that we'll look at shortly),
except for one minor issue that only affects you if you're running Windows NT/2000/XP. If you use any of
those operating systems, find a file called my-example.cnf in the directory to which you just installed
MySQL. Copy it to the root of your C: drive and rename it to my.cnf. If you don't like the idea of a MySQL
configuration file sitting in the root of your C: drive, you can instead name it my.ini and put it in your
Windows directory (e.g. D:\WINNT if Windows 2000 is installed on drive D:). Whichever you choose, open
the file in WordPad (Notepad is likely to display it incorrectly) and look for the following line:

http://www.mysql.com/downloads/
http://www.mysql.com/downloads/mirrors.html

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

6

basedir = d:/mysql/

Uncomment this line by removing the '#' symbol at the start, and change the path to point to your MySQL
installation directory, using slashes (/) instead of backslashes (\). For instance, I changed the line on my
system to read as follows:
basedir = d:/Program Files/mysql/

With that change made, save the file and close WordPad. MySQL will now run on your Windows
NT/2000/XP system! If you're using Windows 95/98/ME, this step is not necessary – MySQL will run just
fine as-installed.

Just like your Web server, MySQL is a program that should be run in the background so that it may respond
to requests for information at any time. The server program may be found in the "bin" subfolder of the folder
into which you installed MySQL. To make things complicated, however, there are actually several versions
of the MySQL server to choose from:

! mysqld.exe This is the basic version of MySQL if you run Windows 95, 98, or ME. It includes
support for all advanced features, and includes debug code to provide additional information in the
case of a crash (if your system is set up to debug programs). As a result of this code, however, the
server might run a little slow, and I've generally found that MySQL is so stable that crashes aren't
really a concern.

! mysqld-opt.exe This version of the server lacks a few of the advanced features of the basic server,
and does not include the debug code. It’s optimized to run quickly on today's processors. For
beginners, the advanced features are not a big concern. You certainly won't be using them while you
complete the tasks in this book. This is the version of choice for beginners running Windows 95, 98,
or ME.

! mysqld-nt.exe This version of the server is compiled and optimized like mysqld-opt, but is
designed to run under Windows NT/2000/XP as a service. If you're using any of those operating
systems, this is probably the server for you.

! mysqld-max.exe This version is like mysqld-opt, but contains advanced features that support
transactions.

! mysqld-max-nt.exe This version’s similar to mysqld-nt, but has advanced features that support
transactions.

All these versions were installed for you in the bin directory. If you're running on Win98x/ME I
recommend sticking with mysql-opt for now - move to mysqld-max if you ever need the advanced
features. On Windows NT/2000/XP, mysqld-nt is my recommendation. Upgrade to mysqld-max-nt
when you need more advanced features.

Starting MySQL is also a little different under WinNT/2000/XP, but this time let's start with the procedure
for Win95/98/ME. Open an MS-DOS Command Prompt and proceed to the MySQL bin directory, and run
your chosen server program:
C:\mysql\bin> mysqld-opt

Don't be surprised when you receive another command prompt. This command launches the server
program so that it runs in the background, even after you close the command prompt. If you press Ctrl-Alt-
Del to pull up the task list, you should see the MySQL server listed as one of the tasks that’s active on your
system.

To ensure that the server is started whenever Windows starts, you might want to create a shortcut to the
program and put it in your Startup folder. This is just like creating a shortcut to any other program on your
system.

On WinNT/2000/XP, you must install MySQL as a system service. Fortunately, this is very easy to do.
Simply open a Command Prompt and run your chosen server program with the -install option:
C:\mysql\bin> mysqld-nt –install

This will install MySQL as a service that will be started the next time you reboot Windows. To manually
start MySQL without having to reboot, just type this command (which can be run from any directory):
C:\> net start mysql

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

7

To verify that the MySQL server is running properly, press Ctrl-Alt-Del and open the Task List. If all is well,
the server program should be listed on the Processes tab.

Installing PHP
The next step is to install PHP. At the time of this writing, PHP 4.x has become well-established as the
version of choice; however, some old servers still use PHP 3.x (usually because nobody has bothered to
update it). I'll cover the installation of PHP4 here, so be aware that if you're still working with PHP3 there
may be some minor differences.

Download PHP for free from http://www.php.net/ (or one of its mirrors listed at
http://www.php.net/mirrors.php). You'll want the Win32 Binaries package, and be sure to grab the
version that includes both the CGI binary and the server API versions if you have a choice.

In addition to PHP itself, you will need a Web server such as Internet Information Services (IIS), Apache,
Sambar or OmniHTTPD. PHP was designed to run as a plug-in for existing Web server software. To test
dynamic Web pages with PHP, you'll need to equip your own computer with Web server software, so that
PHP has something to plug into. If you have Windows 2000/XP, then install IIS (if it’s not already on your
system): open Control Panel, Add/Remove Programs, Add/Remove Windows Components, and select IIS from the
list of components. If you're not lucky enough to have IIS at your disposal, you can instead use a free Web
server like Apache. I'll give instructions for both options in detail.

First, whether you have IIS or not, complete these steps:

! Unzip the file you downloaded into a directory of your choice. I recommend C:\PHP and will refer
to this directory from here onward, but feel free to choose another directory if you like.

! Find the file called php4ts.dll in the PHP folder and copy it to the System32 subfolder of your
Windows folder (e.g. C:\Windows\System32).

! Find the file called php.ini-dist in the PHP folder and copy it to your Windows folder. Once
there, rename it to php.ini.

! Open the php.ini file in your favorite text editor (use WordPad if Notepad doesn't display the file
properly). It's a large file with a lot of confusing options, but look for a line that begins with
extension_dir and set it so that it points to the extensions subfolder of your PHP folder:
extension_dir = C:\PHP\extensions

A little further down, look for a line that starts with session.save_path and set it to your
Windows TEMP folder:
session.save_path = C:\WINDOWS\TEMP

Save the changes you made and close your text editor.

Now, if you have IIS, follow these instructions:

! In the Windows Control Panel, open Administrative Tools | Internet Information Services.

! In the tree view, expand the entry labeled local computer, then under Web Sites look for Default Web
Site (unless you have virtual hosts set up, in which case, choose the site you want to add PHP
support to). Right-click on the Web Site and choose Properties.

! Click the ISAPI Filters tab, and click Add.... In the Filter Name field, type PHP, and in the Executable
field, browse for the file called php4isapi.dll in the sapi subfolder of your PHP folder (e.g.
C:\PHP\sapi\php4isapi.dll). Click OK.

! Click the Home Directory tab, and click the Configuration… button. On the Mappings tab click Add.
Again choose your php4isapi.dll file as the executable and type .php in the extension box
(including the '.'). Leave everything else unchanged and click OK. If you want your Web server to
treat other file extensions as PHP files (.php3, .php4, and .phtml are common choices), repeat this
step for each extension. Click OK to close the Application Configuration window.

! Click OK to close the Web Site Properties window. Close the Internet Information Services window.

http://www.php.net/
http://www.php.net/mirrors.php

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

8

! Again, in the Control Panel under Administrative Tools, open Services. Look for the World Wide Web
Publishing service near the bottom of the list. Right-click on it and choose Restart to restart IIS with
the new configuration options. Close the Services window.

! You're done! PHP is installed!

If you don't have IIS, you'll first need to install some other Web server. For our purposes I'll assume you
have downloaded and installed Apache server from http://httpd.apache.org/; however, PHP can
also be installed on Sambar Server (http://www.sambar.com/), OmniHTTPD
(http://www.omnicron.ab.ca/httpd/), and others.

Once you've downloaded and installed Apache according to the instructions included with it, open
http://localhost/ in your Web browser, to make sure it works properly. If you don't see a Web page
explaining that Apache was successfully installed, then either you haven't run Apache yet, or your
installation is faulty. Check the documentation and make sure Apache is running properly before you install
PHP.

If you've made sure Apache is up and running, you can add PHP support:

! On your Start Menu, choose Programs, Apache httpd Server, Configure Apache Server, Edit Configuration.
This will open the httpd.conf file in NotePad.

! All of the options in this long and intimidating configuration file should have been set up correctly
by the Apache install program. All you need to do is add the following three lines to the very bottom
of the file:
LoadModule php4_module c:/php/sapi/php4apache.dll
AddType application/x-httpd-php .php .php3 .phtml
AddType application/x-httpd-php-source .phps

Be sure the LoadModule line points to the php4apache.dll file on your system, and note the use
of slashes instead of backslashes.

! Save your changes and close Notepad.

! Restart Apache by choosing Programs, Apache httpd Server, Control Apache Server, Restart on the Start
menu. If all is well, Apache will start up again without complaint.

! You're done! PHP is installed!

With MySQL and PHP installed, you're ready to proceed to the Post-Installation Setup Tasks section on page
12.

Installing under Linux
This section covers the procedure for installing PHP and MySQL under most current distributions of Linux.
These instructions were tested under the latest versions of RedHat Linux and Mandrake Linux; however,
they should work on other distributions such as Debian without much trouble. The steps involved will be
very similar, if not identical.

As a user of one of the handful of Linux distributions available, you may be tempted to download and install
the RPM distributions of PHP and MySQL. RPM's are nice, pre-packaged versions of software that are really
easy to install. Unfortunately, they also limit the software configuration options available to you. If you
already have MySQL and PHP installed in RPM form, then feel free to proceed with those versions, and skip
forward to the "Post-Installation Setup Tasks" section. If you encounter any problems, you can always return
here to uninstall the RPM versions and reinstall PHP and MySQL by hand.

Since many Linux distributions will automatically install PHP and MySQL for you, your first step should be
to remove any old RPM versions of PHP and MySQL from your system. If one exists, use your distribution's
graphical software manager to remove all packages with 'php' or 'mysql' in their names (mod_php is one
that is often missed).

If your distribution doesn't have a graphical software manager, or if you didn't install a graphical user
interface for your server, you can remove these from the command line. You'll need to be logged in as the
root user to issue the commands to do this. Note that in the following commands, "%" represents the shell
prompt, and doesn’t to be typed in.

http://httpd.apache.org/
http://www.sambar.com/
http://www.omnicron.ab.ca/httpd/
http://localhost/

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

9

% rpm –e mysql
% rpm –e mod_php
% rpm –e php

If any of these commands tell you that the package in question is not installed, don't worry about it unless
you know for a fact that it is. In such cases, it will be necessary for you to remove the offending item by
hand. Seek help from an experienced user if you don’t know how. If the second command runs successfully
(i.e. no message is displayed), then you did indeed have an RPM version of PHP installed, and you'll need to
do one more thing to get rid of it entirely. Open your Apache configuration file (usually
/etc/httpd/conf/httpd.conf) in your favorite text editor and look for the two lines shown here. They
usually appear in separate sections of the file, so don't worry if they're not together. The path of the
libphp4.so file may also be slightly different (e.g. extramodules instead of just modules). If you can't find
them, don't worry – it just means that the RPM uninstaller was smart enough to remove them for you.
LoadModule php4_module modules/libphp4.so
AddModule mod_php4.c

These lines are responsible for telling Apache to load PHP as a plug-in module. Since you just uninstalled
that module, you'll need to get rid of these lines to make sure Apache keeps working properly. You can
comment out these lines by adding a hash (#) at the beginning of both lines.

To make sure Apache is still in working order, you should now restart it without the PHP plug-in:
% /etc/rc.d/init.d/httpd restart

With everything neat and tidy, you're ready to download and install MySQL and PHP.

Installing MySQL
MySQL is freely available for Linux from http://www.mysql.com (or one of its mirrors listed at
http://www.mysql.com/downloads/mirrors.html). Download the latest stable release (listed as
recommended on the download page). You should grab the Tarball version under Source downloads, with
filename mysql-3.xx.xx.tar.gz.

With the program downloaded (it was about 10.5MB as of this writing), you should make sure you're logged
in as root before proceeding with the installation, unless you only want to install MySQL in your own home
directory. To begin, unpack the downloaded file and move into the directory that is created:
% tar xfz mysql-3.xx.xx.tar.gz
% cd mysql-version

Next, you need to configure the MySQL install. Unless you really know what you're doing, all you should
have to do is tell it where to install. I recommend /usr/local/mysql:
% ./configure --prefix=/usr/local/mysql

After sitting through the screens and screens of configuration tests, you'll eventually get back to a command
prompt. Be sure the configuration completed successfully. If you see an error message just before the
configuration quit, you'll need to address the problem it's complaining about. On Mandrake 8.0, for example,
it complained of "No curses/termcap library found". I simply installed the libncurses5-devel package in
Mandrake's Software Manager, and the configuration worked fine on a second attempt. Once configuration
is complete, you're ready to compile MySQL:
% make

After even more screens of compilation (this could take as long as a half an hour on some systems), you'll
again be returned to the command prompt. You're now ready to install your newly compiled program:
% make install

MySQL is now installed, but before it can do anything useful its database files need to be installed too. Still
in the directory you installed from, type the following command:
% scripts/mysql_install_db

With that done, you can delete the directory you've been working in, which just contains all the source files
and temporary installation files. If you ever need to reinstall, you can simply re-extract the mysql-
version.tar.gz file.

http://www.mysql.com/
http://www.php.net/mirrors.php

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

10

With MySQL installed and ready to store information, all that's left is to get the server running on your
computer. While you can run the server as the root user, or even as yourself (if, for example, you installed
the server in your own home directory), the best idea is to set up on the system a special user whose sole
purpose is to run the MySQL server. This will remove any possibility of someone using the MySQL server as
a way to break into the rest of your system. To create a special MySQL user, you'll need to log in as root and
type the following commands:
% /usr/sbin/groupadd mysqlgrp
% /usr/sbin/useradd –g mysqlgrp mysqlusr

By default, MySQL stores all database information in the var subdirectory of the directory to which it was
installed. We want to make it so that nobody can access that directory except our new MySQL user.
Assuming you installed MySQL to the /usr/local/mysql directory, you can use these commands:
% cd /usr/local/mysql
% chown –R mysqlusr.mysqlgrp var
% chmod –R go-rwx var

Now everything's set for you to launch the MySQL server for the first time. From the MySQL directory, type
the following command:
% bin/safe_mysqld --user=mysqlusr &

If you see the message 'mysql daemon ended', then the MySQL server was prevented from starting. The error
message should have been written to a file called hostname.err (where hostname is your machine's
hostname) in MySQL's var directory. You'll usually find that this happens because another MySQL server is
already running on your computer.

If the MySQL server was launched without complaint, the server will run (just like your Web or FTP server)
until your computer is shut down. To test that the server is running properly, type the following command:
% bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed. If you receive an error
message, something has gone wrong. Again, check the hostname.err file to see if the MySQL server
output an error message while starting up. If you retrace your steps to make sure you followed the process
described above, and this doesn't solve the problem, a post to the SitePoint.com Forums will help you pin it
down in no time.

If you want your MySQL server to run automatically whenever the system is running (just like your Web
server probably does), you'll have to set it up to do so. In the share/mysql subdirectory of the MySQL
directory, you'll find a script called mysql.server that can be added to your system startup routines to do
this.

First of all, assuming you've set up a special MySQL user to run the MySQL server, you'll need to tell the
MySQL server to start as that user by default. To do this, create in your system's /etc directory a file called
my.cnf that contains these two lines:
[mysqld]
user=mysqlusr

Now, when you run safe_mysqld or mysql.server to start the MySQL server, it will launch as
mysqlusr without your having to tell it to. All that’s left to do is to set up your system to run
mysql.server automatically at startup.

Setting up your system to run the script at startup is a highly operating system-dependant task. If you're not
sure of how to do this, you'd be best to ask someone who knows. However the following commands
(starting in the MySQL directory) will do the trick for most versions of Linux1:
% cp share/mysql/mysql.server /etc/rc.d/init.d/
% cd /etc/rc.d/init.d
% chmod 500 mysql.server
% cd /etc/rc.d/rc3.d
% ln –s ../init.d/mysql.server S99mysql

1 Under the current SUSE distribution of Linux, there is no init.d directory, just a symbolic link pointing back to /etc/rc.d;
symbolic links for startup files should thus be directed to the /etc/rc.d directory (e.g. ln –s ../mysql.server S99mysql).

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

11

% cd /etc/rc.d/rc5.d
% ln –s ../init.d/mysql.server S99mysql

That's it! To test that this works, reboot your system and request the status of the server as before.

One final thing you might like to do for convenience's sake is to place the MySQL client programs, which
you'll use to administer your MySQL server later on, in the system path. To this end, you can place symbolic
links to mysql, mysqladmin, and mysqldump in your /usr/local/bin directory:
% ln –s /usr/local/mysql/bin/mysql /usr/local/bin/mysql
% ln –s /usr/local/mysql/bin/mysqladmin /usr/local/bin/mysqladmin
% ln –s /usr/local/mysql/bin/mysqldump /usr/local/bin/mysqldump

Installing PHP
As mentioned above, PHP is not really a program in and of itself. Instead, it’s a plug-in module for your
Web server (probably Apache). There are actually three ways to install the PHP plug-in for Apache:

! As a CGI program that Apache runs every time it needs to process a PHP-enhanced Web page.

! As an Apache module compiled right into the Apache program.

! As an Apache module loaded by Apache each time it starts up.

The first option is the easiest to install and set up, but it requires Apache to launch PHP as a program on
your computer every time a PHP page is requested. This can really slow down the response time of your
Web server, especially if more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but since you‘re likely to have
Apache installed already, you'd probably prefer to avoid having to download, recompile, and reinstall it
from scratch. For this reason, we'll use the third option.

To start, download the PHP Source Code package from http://www.php.net (or one of its mirrors listed
at http://www.php.net/mirrors.php). At the time of this writing, PHP 4.x has become well-
established as the version of choice; however, some old servers still use PHP 3.x (usually because nobody
has bothered to update it). I'll be covering the installation of PHP4 here, so be aware that if you still work
with PHP3 there may be some minor differences.

The file you downloaded should be called php-version.tar.gz. To begin, we’ll extract the files it
contains:
% tar xfz php-version.tar.gz
% cd php-version

To install PHP as a loadable Apache module, you'll need the Apache apxs program. This comes with most
versions of Apache, but if you're using the copy that was installed with your distribution of Linux, you may
need to install the Apache development RPM package to access Apache apxs. You should be able to install
this package by whatever means your software distribution provides. By default, RedHat and Mandrake will
install the program as /usr/sbin/apxs, so if you see this file, you know it's installed.

For the rest of the install procedure, you'll need to be logged in as the root user so you can make changes to
the Apache configuration files.

The next step is to configure the PHP installation program by telling it which options you want to enable,
and where it should find the programs it needs to know about (like Apache and MySQL). Unless you know
exactly what you're doing, simply type the command like this (all on one line):
% ./configure
 --prefix=/usr/local/php
 --with-config-file-path=/usr/local/php
 --with-apxs=/usr/sbin/apxs
 --enable-track-vars
 --enable-magic-quotes
 --enable-debugger

Again, check for any error messages and install any files it identifies as missing. On Mandrake 8.0, for
example, it complained that the 'lex' command wasn't found. I searched for 'lex' in the Mandrake package list
and it came up with 'flex', which it described as a program for matching patterns of text used in many
programs' build processes. Once that was installed, the configuration process went without a hitch. After

http://www.php.net/
http://www.php.net/mirrors.php3

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

12

you watch several screens of tests scroll by, you'll be returned to the command prompt. The following two
commands will compile and then install PHP. Take a coffee break: this will take some time.
% make
% make install

PHP is now installed in /usr/local/php (unless you specified a different directory with the --prefix
option of the configure script above) and it’ll expect to find its configuration file, named php.ini, in the
lib subdirectory (unless you specified a different directory with the --with-config-file-path option
of the configure script above). PHP comes with two sample php.ini files called php.ini-dist and
php.ini-optimized. Copy these files from your installation work directory to the directory in which
PHP expects to find its php.ini file, then make a copy of the php.ini-dist file and call it php.ini:
% cp php.ini* /usr/local/php/lib/
% cd /usr/local/php/lib/
% cp php.ini-dist php.ini

You may now delete the directory from which you compiled PHP - it’s no longer needed.

We'll worry about fine-tuning php.ini shortly. For now, we need to make sure Apache knows where to
find PHP, so that it can load the program when it starts up. Open your Apache httpd.conf configuration
file (usually /etc/httpd/conf/httpd.conf if you’re using your Linux distribution's copy of Apache) in
your favorite text editor. Look for a line that looks like this:
LoadModule php4_module lib/apache/libphp4.so

Find the new, uncommented line (no # at the start of the line), not the old line that you may have
commented out earlier. It may not appear along with the other LoadModule lines in the file. Once you find
it, you might need to change the path to match all the other LoadModule lines in the file. Under RedHat
Linux, this means you’ll have to change the line to make it look like this:
LoadModule php4_module modules/libphp4.so

PHP will probably run correctly without this change, but on older versions of RedHat, Apache won’t be able
to find the libphp4.so file until you make this change. If you prefer, leave the line alone for now - you can
come back and change it if you run into trouble.

Next, look for the line that begins with DirectoryIndex. In recent distributions, this may be in a separate
file called commonhttpd.conf. This line tells Apache what filenames to use when it looks for the default
page for a given directory. You'll see the usual index.html and so forth, but you need to add index.php,
index.php3, and index.phtml to that list if they're not there already:
DirectoryIndex index.html ... index.php index.phtml index.php3

Finally, go right to the bottom of the file (again, this should go in commonhttpd.conf if you have such a
file) and add these lines, to tell Apache which file extensions should be seen as PHP files:
AddType application/x-httpd-php .php .php3 .phtml
AddType application/x-httpd-php-source .phps

That should do it! Save your changes and restart your Apache server. If all things go to plan, Apache should
start up without any error messages. If you run into any trouble, the helpful folks in the SitePoint.com
Forums (myself included) will be happy to help.

Post-Installation Setup Tasks
No matter which operating system you’re running, once PHP is installed and the MySQL server is in
operation, the very first thing you need to do is assign a "root password" for MySQL. MySQL only lets
authorized users view and manipulate the information stored in its databases, so you’ll need to tell MySQL
who is an authorized user, and who isn't. When MySQL is first installed, it’s configured with a user named
root that has access to do pretty much any task without even entering a password. Your first task should be
to assign a password to the root user so that unauthorized users can’t mess around in your databases.

It's important to realize that MySQL, just like a Web server or an FTP server, can be accessed from any
computer on the same network. If you're working on a computer connected to the Internet that means
anyone in the world could try to connect to your MySQL server! The need to pick a hard-to-guess password
should be immediately obvious!

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

13

To set a root password for MySQL, type the following command in the bin directory of your MySQL
installation (include the quotes):
mysqladmin –u root password "your new password"

To make sure MySQL has registered this change, you should tell it to reload its list of authorized users and
passwords:
mysqladmin –u root reload

If this command returns an error message to tell you that access was denied, don't worry: this just means the
password has already taken effect.

To try out your new password, request that the MySQL server tell you its current status:
mysqladmin –u root –p status

Enter your password when prompted. You should see a brief message that provides information about the
server and its current status. The -u root argument tells the program that you want to be identified as the
MySQL user called root. The -p argument tells the program to prompt you for your password before it
tries to connect. The status argument just tells it that you're interested in viewing the system status.

If at any time you want to shut down the MySQL server, you can use the command below. Notice the usage
of the same -u root and -p arguments as before:
mysqladmin –u root –p shutdown

With your MySQL database system safe from intrusion, all that's left is to configure PHP. To do this, we’ll
use a text file called php.ini. If you installed PHP under Windows, you should already have copied
php.ini into your Windows directory. If you installed PHP under Linux using the instructions above, you
should already have copied php.ini into the PHP lib folder (/usr/local/php/lib), or wherever you
chose to put it.

Open php.ini in your favorite text editor and have a glance through it. Most of the settings are pretty well
explained, and most of the default settings are just fine for our purposes. Just check to make sure that your
settings match these:
register_globals = On
magic_quotes_gpc = On
doc_root = the document root folder of your Web server
extension_dir = the PHP install directory

Save the changes to php.ini, and then restart your Web server. To restart Apache under Linux, log in as
root and type this command:
/etc/rc.d/init.d/httpd restart

You’re done! Now you just need to test to make sure everything's working okay (see "Your First PHP Script"
below).

If Your Web Host Provides PHP and MySQL
If the host that provides you with Web space has already installed and set up MySQL and PHP for you and
you just want to learn how to use them, there really isn't a lot you need to do. Now would be a good time to
get in touch with your host and request any information you may need to access these services.

Specifically, you'll need a username and password to access the MySQL server they’ve set up for you. They'll
probably have provided an empty database for you to use as well (which prevents you from messing with
the databases of other users who share the same MySQL server), and you'll want to know the name of your
database.

There are two ways you can access the MySQL server directly. Firstly, you can use telnet or secure shell
(SSH) to log in to the host. You can then use the MySQL client programs (mysql, mysqladmin,
mysqldump) installed there to interact with the MySQL server directly. The second method is to install those
client programs onto your own computer, and have them connect to the MySQL server. Your Web host may
support one or both of these methods, so you'll need to ask which.

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

14

If your host allows you to log in by telnet or SSH to do your work, you'll need a username and password for
the login, in addition to those you'll use to access the MySQL server (they can be different). Be sure to ask for
both sets of information.

If they support remote access to the MySQL server, you'll want to download a program that lets you connect
to, and interact with, the server. This book assumes you've downloaded from http://www.mysql.com/ a
binary distribution of MySQL that includes the three client programs (mysql, mysqladmin, and
mysqldump). Free packages are available for Windows, Linux and other operating systems. Installation
basically consists of finding the three programs and putting them in a convenient place. The rest of the
package, which includes the MySQL server, can be freely discarded. If you prefer a more graphical interface,
download something like MySQL GUI (also available from http://www.mysql.com). I'd really
recommend getting comfortable with the basic client programs first, though, as the commands you use with
them will be similar to those you’ll include in your PHP scripts to access MySQL databases.

Some less expensive Web hosts these days support neither telnet/SSH access, nor direct access to their
MySQL servers. Instead, they provide a management console that allows you to browse and edit your
database through your Web browser. Although this is a fairly convenient and not overly restrictive solution,
it doesn’t help you learn. Instead, I’d recommend the installation of a MySQL server on your own system to
help, especially in the next chapter. Once you're comfortable working with your learning server, you can
start using the server provided by your Web host with their management console. See the previous sections
for instructions on installing MySQL under Windows and Linux.

Your First PHP Script
It would be unfair of me to help you get everything installed and not even give you a taste of what a PHP-
driven Web page looks like until Chapter 3, so here's a little something to whet your appetite.

Open up your favorite text or HTML editor and create a new file called today.php. Note that, to save a file
with a .php extension in Notepad, you'll need to either select 'All Files' as the file type, or surround the
filename with quotes in the Save As dialog; otherwise, Notepad will helpfully save the file as
today.php.txt. Type this into the file:
<html>
<head>
<title>Today's Date</title>
</head>
<body>
<p>Today's Date (according to this Web server) is
<?php

 echo(date("l, F dS Y."));

?></p>
</body>
</html>

If you prefer, you can download this file along with the rest of the code in this book in the code archive at
http://sitepoint.com/books/?bookid=More.

Save this and place it on your Web site as you would any regular HTML file, then view it in your browser.
Note that if you view the file on your own machine, you cannot use the File, Open feature of your browser,
because your Web server must intervene to interpret the PHP code in the file. Instead, you must move the
file into the document root folder of your Web server software (e.g. C:\inetpub\wwwroot\ in IIS, or
C:\Apache Group\Apache\htdocs\ in Apache for Windows), then load it into your browser by typing
http://localhost/today.php. This allows the Web server to run the PHP code in the file and replace it
with the date before it’s sent to the Web browser. Here's what the output should look like:

http://www.mysql.com/
http://www.mysql.com)/
http://localhost/today.php

 Installation

Build Your Own Database Driven Website Using PHP & MySQL

15

Pretty neat, huh? If you use the View Source feature in your browser, all you'll see is a regular HTML file with
the date in it. The PHP code (everything between <?php and ?> in the code above) has been interpreted by
the Web server and converted to normal text before it’s sent to your browser. The beauty of PHP (and other
server-side scripting languages) is that the Web browser doesn't have to know anything about it – the Web
server does all the work!

And don't worry too much about the exact code I used in this example. Before too long you'll know it like
the back of your hand.

If you don't see the date, then something is wrong with the PHP support in your Web server. Use View
Source in your browser to look at the code of the page. You'll probably see the PHP code there in the page.
Since the browser doesn't understand PHP, it just sees <?php ... ?> as one long, invalid HTML tag,
which it ignores. Make sure that PHP support has been properly installed on your Web server, either in
accordance with the instructions provided in previous sections of this chapter, or by your Web host.

Summary
You should now have everything you need to get MySQL and PHP installed on your Web Server. If the little
example above didn't work right (for example, if the raw PHP code appeared instead of the date), something
went wrong with your setup procedure. Drop by the SitePoint.com Forums
(http://www.sitepointforums.com/) and we'll be glad to help you figure out the problem!

In Chapter 2, you'll learn the basics of relational databases and get started working with MySQL. If you've
never even touched a database before, I promise you it'll be a real eye opener!

http://www.sitepointforums.com/

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

16

2 Getting Started with MySQL

In Chapter 1, we installed and set up two software programs: PHP and MySQL. In this chapter, we’ll learn
how to work with MySQL databases using Structured Query Language (SQL).

An Introduction to Databases
As I’ve already explained, PHP is a server-side scripting language that lets you insert into your Web pages
instructions that your Web server software (be it Apache, IIS, or whatever) will execute before it sends those
pages to browsers that request them. In a brief example, I showed how it was possible to insert the current
date into a Web page every time it was requested.

Now that’s all well and good, but things really get interesting when a database is added to the mix. A
database server (in our case, MySQL) is a program that can store large amounts of information in an
organized format that’s easily accessible through scripting languages like PHP. For example, you could tell
PHP to look in the database for a list of jokes that you’d like to appear on your Web site.

In this example, the jokes would be stored entirely in the database. The advantage of this would be twofold.
First, instead of having to write an HTML file for each of your jokes, you could write a single PHP file that
was designed to fetch any joke out of the database and display it. Second, to add a joke to your Web site
would be a simple matter of inserting the joke into the database. The PHP code would take care of the rest,
automatically displaying the new joke along with the others when it fetched the list from the database.

Let’s run with this example as we look at how data is stored in a database. A database is composed of one or
more tables, each of which contains a list of things. For our joke database, we’d probably start with a table
called "jokes" which would contain a list of jokes. Each table in a database has one or more columns, or
fields. Each column holds a certain piece of information about each item in the table. In our example, our
"jokes" table might have columns for the text of the jokes, and the dates on which the jokes were added to the
database. Each joke that we stored in this table would then be said to be a row in the table. These rows and
columns form a table that looks like this:

 Column

↓

Column

↓

Column

↓

 ID JokeText JokeDate

Row # 1 Why did the
chicken…?

2000-04-01

Row # 2 "Knock-knock!"
"Who's there?"

2000-02-22

Notice that, in addition to columns for the joke text ("JokeText") and the date of the joke ("JokeDate"), I
included a column named "ID". As a matter of good design, a database table should always provide a way to
uniquely identify each of its rows. Since it's possible that a single joke could be entered more than once on
the same date, the JokeText and JokeDate columns can't be relied upon to tell all the jokes apart. The function
of the ID column, therefore, is to assign a unique number to each joke, so we have an easy way to refer to
them, and to keep track of which joke is which. Such database design issues will be covered with greater
depth in Chapter 5.

So, to review, the above is a three-column table with two rows (or entries). Each row in the table contains a
joke's ID, its text, and the date of the joke. With this basic terminology under our belts, we're ready to get
started with MySQL.

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

17

Logging On to MySQL
The standard interface for working with MySQL databases is to connect to the MySQL server software
(which you set up in Chapter 1) and type commands one at a time. To make this connection to the server,
you'll need the MySQL client program. If you installed the MySQL server software yourself either under
Windows or under some brand of UNIX, you already have this program installed in the same location as the
server program. Under Linux, for example, the program is called mysql and is located by default in the
/usr/local/mysql/bin directory. Under Windows, the program is called mysql.exe and is located by
default in the C:\mysql\bin directory.

If you didn't set up the MySQL server yourself (if, for example, you'll be working on your Web host's
MySQL server), there are two ways to connect to the MySQL server. The first is to use Telnet or a Secure
Shell (SSH) connection to log into your Web host's server, and then run mysql from there. The second is to
download and install the MySQL software from http://www.mysql.com/ (available free for Windows
and Linux) on your own computer, and use it to connect to the MySQL server over the Internet. Both ways
work fine, and your Web host may support one, the other, or both (you'll need to ask).

Whichever method and operating system you use, you'll end up at a command line, ready to run the MySQL
client program and connect to your MySQL server. Here's what you should type:
mysql –h hostname –u username -p

You need to replace hostname with the host name or IP address of the computer on which the MySQL
server is running. If the client program is run on the same computer as the server, you can actually leave off
the -h hostname part of the command instead of typing -h localhost or –h 127.0.0.1. username
should be your MySQL user name. If you installed the MySQL server yourself, this will just be root. If
you're using your Web host's MySQL server, this should be the MySQL user name they assigned you.

The -p argument tells the program to prompt you for your password, which it should do as soon as you
enter the command above. If you set up the MySQL server yourself, this password is the root password you
chose in Chapter 1. If you're using your Web host's MySQL server, this should be the MySQL password they
gave you.

If you typed everything properly, the MySQL client program will introduce itself and then dump you on the
MySQL command line:
mysql>

Now, the MySQL server can actually keep track of more than one database (this allows a Web host to set up
a single MySQL server for several of its subscribers to use, for example), so your next step should be to pick
a database to work with. First, let's retrieve a list of databases on the current server. Type this command
(don't forget the semicolon!), and hit ENTER.
mysql> SHOW DATABASES;

MySQL will show you a list of the databases on the server. If this is a brand new server (i.e. if you installed
this server yourself in Chapter 1), the list should look like this:
+----------+
| Database |
+----------+
| mysql |
| test |
+----------+
2 rows in set (0.11 sec)

The MySQL server uses the first database, called mysql, to keep track of users, their passwords, and what
they're allowed to do. We'll steer clear of this database for the time being, and come back to it in Chapter 8
 when we discuss MySQL Administration. The second database, called
test, is a sample database. You can actually get rid of this database. I won't be referring to it in this book
(and we'll create our own example database momentarily). Deleting something in MySQL is called
"dropping" it, and the command for doing so is appropriately named:
mysql> DROP DATABASE test;

If you type this command and press Enter, MySQL will obediently delete the database, saying "Query OK"
in confirmation. Notice that you’re not prompted with any kind of "are you sure?" message. You have to be

http://www.mysql.com/

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

18

very careful to type your commands correctly in MySQL because, as this example shows, you can obliterate
your entire database—along with all the information it contains—with one single command!

Before we go any further, let's learn a couple of things about the MySQL command line. As you may have
noticed, all commands in MySQL are terminated by a semicolon (;). If you forget the semicolon, MySQL will
think you haven't finished typing your command, and will let you continue to type on another line:
mysql> SHOW
 -> DATABASES;

MySQL shows you that it's waiting for you to type more of your command by changing the prompt from
mysql> to ->. For long commands, this can be handy, as it allows you to spread your commands out over
several lines.

If you get halfway through a command and realize you made a mistake early on, you may want to cancel the
current command entirely and start over from scratch. To do this, type "\c" and press ENTER:
mysql> DROP DATABASE\c
mysql>

MySQL will completely ignore the command you had begun to type, and will go back to the prompt to wait
for another command.

Finally, if at any time you want to exit the MySQL client program, just type "quit" or "exit" (either one will
work). This is the only command that doesn't need a semicolon, but you can use one if you want to.
mysql> quit
Bye

So what's SQL?
The set of commands we'll use to tell MySQL what to do for the rest of this book is part of a standard called
Structured Query Language, or SQL (pronounced either "sequel" or "ess-cue-ell"—take your pick).
Commands in SQL are also called queries (I'll use these two terms interchangeably in this book).

SQL is the standard language for interacting with most databases, so even if you move from MySQL to a
database like Microsoft SQL Server in the future, you'll find that most of the commands are identical. It's
important that you understand the distinction between SQL and MySQL. MySQL is the database server
software that you're using. SQL is the language that you use to interact with that database.

Creating a Database
Those of you working on your Web host's MySQL server have probably already been assigned a database to
work with. Sit tight, we'll get back to you in a moment. Those of you running a MySQL server that you
installed yourselves will need to create your own database. It’s just as easy to create a database as it is to
delete one:
mysql> CREATE DATABASE jokes;

I chose to name the database "jokes", since that fits with the example we're working with. Feel free to give
the database any name you like, though. Those of you working on your Web host's MySQL server will
probably have no choice in what to name your database, since it will usually already have been created for
you.

Now that we have a database, we need to tell MySQL that we want to use it. Again, the command isn't too
hard to remember:
mysql> USE jokes;

You're now ready to use your database. Since a database is empty until you add some tables to it, our first
order of business will be to create a table that will hold our jokes.

Creating a Table
The SQL commands we've encountered so far have been pretty simple, but since tables are so flexible it takes
a more complicated command to create them. The basic form of the command is as follows:
mysql> CREATE TABLE table_name (
 -> column_1_name column_1_type column_1_details,

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

19

 -> column_2_name column_2_type column_2_details,
 -> ...
 ->);

Let's return to our example "Jokes" table. Recall that it had three columns: ID (a number), JokeText (the text
of the joke), and JokeDate (the date the joke was entered). The command to create this table looks like this:
mysql> CREATE TABLE Jokes (
 -> ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> JokeText TEXT,
 -> JokeDate DATE NOT NULL
 ->);

It looks pretty scary, huh? Let's break it down:

! The first line is pretty simple: it says that we want to create a new table called Jokes.

! The second line says that we want a column called ID that will contain an integer (INT), that is, a
whole number. The rest of this line deals with special details for this column. First, this column is not
allowed to be left blank (NOT NULL). Next, if we don't specify any value in particular when we add
a new entry to the table, we want MySQL to pick a value that is one more than the highest value in
the table so far (AUTO_INCREMENT). Finally, this column is to act as a unique identifier for the
entries in this table, so all values in this column must be unique (PRIMARY KEY).

! The third line is super-simple; it says that we want a column called JokeText, which will contain
text (TEXT).

! The fourth line defines our last column, called JokeDate, which will contain data of type DATE, and
which cannot be left blank (NOT NULL).

Note that, while you're free to type your SQL commands in upper or lower case, a MySQL server running on
a UNIX-based system will be case-sensitive when it comes to database and table names, as these correspond
to directories and files in the MySQL data directory. Otherwise, MySQL is completely case–insensitive, but
for one exception: table, column, and other names must be spelled exactly the same when they’re used more
than once in the same command.

Note also that we assigned a specific type of data to each column we created. ID will contain integers,
JokeText will contain text, and JokeDate will contain dates. MySQL requires you to specify a data type
for each column in advance. Not only does this help keep your data organized, but it allows you to compare
the values within a column in powerful ways (as we'll see later). For a complete list of supported MySQL
data types, see Appendix C.

Now, if you typed the above command correctly, MySQL will respond with Query OK and your first table
will be created. If you made a typing mistake, MySQL will tell you there was a problem with the query you
typed, and will try to give you some indication of where it had trouble understanding what you meant.

For such a complicated command, Query OK is pretty a pretty boring response. Let's have a look at your
new table to make sure it was created properly. Type the following command:
mysql> SHOW TABLES;

The response should look like this:
+-----------------+
| Tables in jokes |
+-----------------+
| Jokes |
+-----------------+
1 row in set

This is a list of all the tables in our database (which I named jokes above). The list contains only one table:
the Jokes table we just created. So far everything looks good. Let's have a closer look at the Jokes table
itself:
mysql> DESCRIBE Jokes;
+----------+---------+------+-----+------------+---------
| Field | Type | Null | Key | Default | Extra
+----------+---------+------+-----+------------+---------
| ID | int(11) | | PRI | 0 | auto_inc
| JokeText | text | YES | | NULL |

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

20

| JokeDate | date | | | 0000-00-00 |
+----------+---------+------+-----+------------+---------
3 rows in set

This provides a list of the columns (or fields) in the table. As we can see, there are three columns in this table,
which appear as the 3 rows in this table of results. The details are somewhat cryptic, but if you look at them
closely for a while you should be able to figure out what most of them mean. Don't worry about it too much,
though. We've got better things to do, like adding some jokes to our table!

We need to look at just one more thing before we get to that, though: deleting a table. This is just as
frighteningly easy to do as it is to delete a database. In fact, the command is almost identical:
mysql> DROP TABLE tableName;

Inserting Data into a Table
Our database is created and our table is built; all that's left is to put some actual jokes into our database. The
command for inserting data into our database is called (appropriately enough) INSERT. There are two basic
forms of this command:
mysql> INSERT INTO table_name SET
 -> columnName1 = value1,
 -> columnName2 = value2,
 -> ...
 -> ;

mysql> INSERT INTO table_name
 -> (columnName1, columnName2, ...)
 -> VALUES (value1, value2, ...);

So, to add a joke to our table, we can choose from either of these commands:
mysql> INSERT INTO Jokes SET
 -> JokeText = "Why did the chicken cross the road? To get to the other
side!",
 -> JokeDate = "2000-04-01";

mysql> INSERT INTO Jokes
 -> (JokeText, JokeDate) VALUES (
 -> "Why did the chicken cross the road? To get to the other side!",
 -> "2000-04-01"
 ->);

Note that in the second form of the INSERT command, the order in which you list the columns must match
the order in which you list the values. Otherwise, the order of the columns doesn't matter, as long as you
give values for all required fields.

Now that you know how to add entries to a table, let's see how we can view those entries.

Viewing Stored Data
The command we use to view data stored in your database tables, SELECT, is the most complicated
command in the SQL language. The reason for this complexity is that the chief strength of a database is its
flexibility in data retrieval and presentation. As, at this point in our experience with databases, we only need
fairly simple lists of results, we'll consider only the simpler forms of the SELECT command.

This command will list everything stored in the Jokes table:
mysql> SELECT * FROM Jokes;

Read aloud, this command says "select everything from Jokes". If you try this command, your results will
resemble this:
+----+---+---------
---+
| ID | JokeText | JokeDate
|
+----+---+---------
---+
| 1 | Why did the chicken cross the road? To get to the other side! | 2000-04-
01 |

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

21

+----+---+---------
---+

1 row in set (0.05 sec)

It looks a little messed up, because the text in the JokeText column is too long for the table to fit properly
on the screen. For this reason, you might want to tell MySQL to leave out the JokeText column. The
command for doing this is as follows:
mysql> SELECT ID, JokeDate FROM Jokes;

This time instead of telling it to "select everything", we told it precisely which columns we wanted to see.
The results look like this:
+----+------------+
| ID | JokeDate |
+----+------------+
| 1 | 2000-04-01 |
+----+------------+
1 row in set (0.00 sec)

Not bad, but we'd like to see at least some of the joke text, wouldn't we? In addition to listing the columns
that we want the SELECT command to show us, we can modify those columns with functions. One function,
called LEFT, lets us tell MySQL to display up to a specified maximum number of characters when it displays
a column. For example, let's say we wanted to see only the first 20 characters of the JokeText column:
mysql> SELECT ID, LEFT(JokeText,20), JokeDate FROM Jokes;
+----+----------------------+------------+
| ID | LEFT(JokeText,20) | JokeDate |
+----+----------------------+------------+
| 1 | Why did the chicken | 2000-04-01 |
+----+----------------------+------------+
1 row in set (0.05 sec)

See how that worked? Another useful function is COUNT, which simply lets us count the number of results
returned. So, for example, if we wanted to find out how many jokes were stored in our table, we could use
the following command:
mysql> SELECT COUNT(*) FROM Jokes;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.06 sec)

As we can see, we only have one joke in our table.

So far, all our examples have fetched all the entries in the table. But if we add what's called a WHERE clause
(for reasons that will become obvious in a moment) to a SELECT command, we can limit which entries are
returned as results. Consider this example:
mysql> SELECT COUNT(*) FROM Jokes WHERE JokeDate >= "2000-01-01";

This query will count the number of jokes that have dates "greater than or equal to" January 1st, 2000.
"Greater than or equal to", when dealing with dates, means "on or after".

Another variation on this theme lets you search for entries that contain a certain piece of text. Check out this
query:
mysql> SELECT JokeText FROM Jokes WHERE JokeText LIKE "%chicken%";

This query displays the text of all jokes that contain the word "chicken" in their JokeText column. The
LIKE keyword tells MySQL that the named column must match the given pattern. In this case, the pattern
we've used is "%chicken%". The % signs here indicate that the word "chicken" may be preceded and/or
followed by any string of text.

Additional conditions may also be combined in the WHERE clause to further restrict results. For example, to
display knock-knock jokes from April 2000 only, we could use the following query:
mysql> SELECT JokeText FROM Jokes WHERE
 -> JokeText LIKE "%knock%" AND

 Getting Started with MySQL

Build Your Own Database Driven Website Using PHP & MySQL

22

 -> JokeDate >= "2000-04-01" AND
 -> JokeDate < "2000-05-01";

Enter a few more jokes into the table and experiment with SELECT statements a little. A good familiarity
with the SELECT statement will come in handy later in this book.

There's a lot more you can do with the SELECT statement, but we'll save looking at some of its more
advanced features for later, when we need them.

Modifying Stored Data
Once you've entered your data into a database table, you might like to change it at some point. Whether you
want to correct a spelling mistake, or change the date attached to a joke, such alterations are made using the
UPDATE command. This command contains elements of the INSERT command (that set column values) and
of the SELECT command (that pick out entries to modify). The general form of the UPDATE command is as
follows:
mysql> UPDATE table_name SET
 -> col_name = new_value, ...
 -> WHERE conditions;

So, for example, if we wanted to change the date on the joke we entered above, we'd use the following
command:
mysql> UPDATE Jokes SET JokeDate="1990-04-01" WHERE ID=1;

Here's where that ID column comes in handy. It allows us to easily single out a joke for changes. The WHERE
clause here works just like it does in the SELECT command. This next command, for example, changes the
date of all entries that contain the word "chicken":
mysql> UPDATE Jokes SET JokeDate="1990-04-01"
 -> WHERE JokeText LIKE "%chicken%";

Deleting Stored Data
The deletion of entries in SQL is dangerously easy (if you can't tell by now, this is a recurring theme). Here's
the command syntax:
mysql> DELETE FROM table_name WHERE conditons;

So to delete all chicken jokes from your table, you'd use the following query:
mysql> DELETE FROM Jokes WHERE JokeText LIKE "%chicken%";

One thing to note is that the WHERE clause is actually optional. However, you should be very careful if you
leave it off, as the DELETE command will then apply to all entries in the table. This command will empty the
Jokes table in one fell swoop:
mysql> DELETE FROM Jokes;

Scary, huh?

Summary
There's a lot more to the MySQL database system and the SQL language than the few basic commands we've
looked at here, but these commands are by far the most commonly used. So far we've only worked with a
single table. To realize the true power of a relational database, we'll also need to learn how to use multiple
tables together to represent potentially complex relationships between database entities.

All this and more will be covered in Chapter 5, where we'll discuss
database design principles, and look at some more advanced examples. For now, though, we've hopefully
accomplished our objective, and you can comfortably interact with MySQL using the command line
interface.

In Chapter 3, the fun continues as we delve into the PHP server-side scripting language, and use it to create
dynamic Web pages. If you like, you can practice with MySQL a little before you move on, by creating a
decent-sized Jokes table - this will come in handy in Chapter 4!

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

23

3 Getting Started with PHP

In Chapter 2, we learned how to use the MySQL database engine to store a list of jokes in a simple database
(composed of a single table named Jokes). To do so, we used the MySQL command-line client to enter SQL
commands (queries). In this chapter, we'll introduce the PHP server-side scripting language. In addition to
the basic features we'll explore here, this language has full support for communication with MySQL
databases.

Introducing PHP
As we've discussed previously, PHP is a server-side scripting language. This concept is not obvious,
especially if you're used to designing pages with just HTML and JavaScript. A server-side scripting language
is similar to JavaScript in many ways, as they both allow you to embed little programs (scripts) into the
HTML of a Web page. When executed, such scripts allow you to control what will actually appear in the
browser window with more flexibility than is possible using straight HTML.

The key difference between JavaScript and PHP is simple. JavaScript is interpreted by the Web browser once
the Web page that contains the script has been downloaded. Meanwhile, server-side scripting languages like
PHP are interpreted by the Web server before the page is even sent to the browser. And, once it’s
interpreted, the results of the script replace the PHP code in the Web page itself, so all the browser sees is a
standard HTML file. The script is processed entirely by the server, hence the designation: server-side
scripting language.

Let's look back at the today.php example presented in Chapter 1:
<html>
<head>
<title>Today's Date</title>
</head>
<body>
<p>Today's Date (according to this Web server) is
<?php

 echo(date("l, F dS Y."));

?></p>
</body>
</html>

Most of this is plain HTML. The line between <?php and ?>, however, is written in PHP. <?php means
"begin PHP code", and ?> means "end PHP code". The Web server is asked to interpret everything between
these two delimiters, and to convert it to regular HTML code before it sends the Web page to the requesting
browser. The browser is presented with something like this:
<html>
<head>
<title>Today's Date</title>
</head>
<body>
<p>Today's Date (according to this Web server) is
Wednesday, May 30th 2001.</p>
</body>
</html>

Notice that all signs of the PHP code have disappeared. In their place, the output of the script has appeared,
and looks just like standard HTML. This example demonstrates several advantages of server-side scripting:

! No browser compatibility issues. PHP scripts are interpreted by the Web server and nothing else,
so you don't have to worry about whether the language you're using will be supported by your
visitors' browsers.

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

24

! Access to server-side resources. In the above example, we placed the date according to the Web
server into the Web page. If we had inserted the date using JavaScript, we would only be able to
display the date according to the computer on which the Web browser was running. Now, while this
isn't an especially impressive example of the exploitation of server-side resources, we could just as
easily have inserted some other information that would only be available to a script running on the
Web server, for example, information stored in a MySQL database that runs on the Web server
computer.

! Reduced load on the client. JavaScript can significantly slow down the display of a Web page on
slower computers, as the browser must run the script before it can display the Web page. With
server-side scripting, this becomes the burden of the Web server machine.

Basic Syntax and Commands
PHP syntax will be very familiar to anyone with an understanding of C, C++, Java, JavaScript, Perl, or any
other C-derived language. A PHP script consists of a series of commands, or statements, each of which is an
instruction that the Web server must follow before it can proceed to the next. PHP statements, like those in
the above-mentioned languages, are always terminated by a semicolon (;).

This is a typical PHP statement:
echo("This is a test!");

This statement invokes a built-in function called echo and passes it a string of text: This is a
test! Built-in functions can be thought of as things that PHP knows how to do without us having
to spell out the details. PHP has a lot of built-in functions that let us do everything from sending email, to
working with information that’s stored in various types of databases. The echo function, however, simply
takes the text that it’s given, and places it into the HTML code of the page at the current location. Consider
the following (echo.php in the code package):
<html>
<head>
<title> Simple PHP Example </title>
</head>
<body>
<p><?php echo("This is a test!"); ?></p>
</body>
</html>

If you paste this code into a file called echo.php (or echo.php3, if your Web host has not configured
.php files to be recognized as PHP scripts) and place it on your Web server, a browser that views the page
will see this:
<html>
<head>
<title> Simple PHP Example </title>
</head>
<body>
<p>This is a test!</p>
</body>
</html>

Notice that the string of text contained HTML tags (and), which is perfectly acceptable.

You may wonder why we need to surround the string of text with both parentheses and quotes. Quotes are
used to mark the beginning and end of strings of text in PHP, so their presence is fully justified. The
parentheses serve a dual purpose. First, they indicate that echo is a function that you want to call. Second,
they mark the beginning and end of a list of "parameters" that you wish to provide, in order to tell the
function what to do. In the case of the echo function, you only need to provide the string of text that you
want to appear on the page. Later on, we'll look at functions that take more than one parameter (and we'll
separate those parameters with commas), and we’ll consider functions that take no parameters at all (for
which we’ll still need the parentheses, though we won't type anything between them).

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

25

Variables and Operators
Variables in PHP are identical to variables in most other programming languages. For the uninitiated, a
variable is a name given to an imaginary box into which any value may be placed. The following statement
creates a variable called $testvariable (all variable names in PHP begin with a dollar sign) and assigns it
a value of 3:
$testvariable = 3;

PHP is a loosely typed language. This means that a single variable may contain any type of data (be it a
number, a string of text, or some other kind of value), and may change types over its lifetime. So the
following statement, if it appears after the statement above, assigns a new value to our existing
$testvariable. In the process, the variable changes type: where it used to contain a number, it now
contains a string of text:
$testvariable = "Three";

The equals sign we used in the last two statements is called the assignment operator, as it is used to assign
values to variables. Other operators may be used to perform various mathematical operations on values:
$testvariable = 1 + 1; // Assigns a value of 2.
$testvariable = 1 – 1; // Assigns a value of 0.
$testvariable = 2 * 2; // Assigns a value of 4.
$testvariable = 2 / 2; // Assigns a value of 1.

The lines above each end with a comment. Comments are a way to describe what your code is doing - they
insert explanatory text into your code, and tell the PHP interpreter to ignore it. Comments begin with // and
they finish at the end of the same line. You might be familiar with /* */ style comments in other languages
- these work in PHP as well. I'll be using comments throughout the rest of this book to help explain what the
code I present is doing.

Now, to get back to the four statements above, the operators we used here allow you to add, subtract,
multiply, and divide numbers. Among others, there is also an operator that sticks strings of text together,
called the concatenation operator:
$testvariable = "Hi " . "there!"; // Assigns a value of "Hi there!".

Variables may be used almost anywhere that you use an actual value. Consider these examples:
$var1 = "PHP"; // Assigns a value of "PHP" to $var1
$var2 = 5; // Assigns a value of 5 to $var2
$var3 = $var2 + 1; // Assigns a value of 6 to $var3
$var2 = $var1; // Assigns a value of "PHP" to $var2
echo($var1); // Outputs "PHP"
echo($var2); // Outputs "PHP"
echo($var3); // Outputs 6
echo($var1 . " rules!"); // Outputs "PHP rules!"
echo("$var1 rules!"); // Outputs "PHP rules!"
echo('$var1 rules!'); // Outputs '$var1 rules!'

Notice the last two lines especially. You can include the name of a variable right inside a text string, and
have the value inserted in its place if you surround the string with double quotes. This process of converting
variable names to their values is known in technical circles as variable interpolation. However, as the last
line demonstrates, a string surrounded with single quotes will not interpolate variable names within the
string.

User Interaction and Forms
For many applications of PHP, the ability to interact with users who view the Web page is essential.
Veterans of JavaScript tend to think in terms of event handlers, which let you react directly to the actions of
the user - for example, the movement of the mouse over a link on the page. Server-side scripting languages
such as PHP have a more limited scope when it comes to user interaction. As PHP code is activated when a
page is requested from the server, user interaction can only occur in a back-and-forth fashion: the user sends
requests to the server, and the server replies with dynamically generated pages.

The key to creating interactivity with PHP is to understand the techniques we can use to send information
about a users’ interaction along with their request for a new Web page. PHP makes this fairly easy, as we’ll
now see.

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

26

The simplest method we can use to send information along with a page request uses the URL query string.
If you’ve ever seen a URL with a question mark following the filename, you’ve witnessed this technique in
use. Let’s look at an easy example. Create a regular HTML file called welcome.html (no .php file
extension is required, since there will be no PHP code in this file) and insert this link:
 Hi, I'm Kevin!

This is a link to a file called welcome.php, but as well as linking to the file, we're also passing a variable
along with the page request. The variable is passed as part of the "query string", which is the portion of the
URL that follows the question mark. The variable is called name and its value is Kevin. To restate, we have
created a link that loads welcome.php, and informs the PHP code contained in the file that name equals
Kevin.

To really understand the results of this, we need to look at welcome.php. Create it as a new HTML file, but
this time note the .php extension - this tells the Web server that it can expect to interpret some PHP code in
the file. If your Web server is not configured to accept .php as a file extension for PHP files, you may have
to call it welcome.php3 instead (in which case you'll also want to adjust the link above accordingly). In the
body of this new file, type:
<?php
 echo("Welcome to our Web site, $name!");
?>

Now, if you use the link in the first file to load this second file, you'll see that the page says "Welcome to our
Web site, Kevin!" The value of the variable passed in the query string of the URL was automatically placed
into a PHP variable called $name, which we used to display the value passed as part of a text string.

You can pass more than one value in the query string if you want to. Let's look at a slightly more complex
version of the same example. Change the link in the HTML file to read as follows (this is welcome2.html in
the code archive located at http://sitepoint.com/books/?bookid=More):
 Hi, I'm Kevin Yank!

This time, we’ll pass two variables: firstname and lastname. The variables are separated in the query
string by an ampersand (&). You can pass even more variables by separating each name=value pair from
the next with an ampersand.

As before, we can use the two variable values in our welcome.php file (this is welcome2.php in the code
archive located at http://sitepoint.com/books/?bookid=More):
<?php
 echo("Welcome to my Website, $firstname $lastname!");
?>

This is all well and good, but we still have yet to achieve our goal of true user interaction, where the user can
actually enter arbitrary information and have it processed by PHP. To continue with our example of a
personalized welcome message, we'd like to allow the user to actually type his or her name and have it
appear in the message. To allow the user to type in a value, we'll need to use an HTML form.

Here's the code (welcome3.html):
<form action="welcome.php" method="get">
First Name: <input type="text" name="firstname" />

Last Name: <input type="text" name="lastname" />

<input type="submit" value="GO" />
</form>

Don't be alarmed at the slashes that appear in some of these tags (e.g.
). The new XHTML standard
for coding Web pages, calls for these in any tag that does not have a closing tag, which includes <input>
and
 tags, among others. Current browsers do not require you to use the slashes, of course, but for the
sake of standards-compliance, the HTML code in this book will observe this recommendation. Feel free to
leave the slashes out if you prefer (I agree that they're not especially nice to look at).

This form has the exact same effect as the second link we looked at (with
firstname=Kevin&lastname=Yank in the query string), except that you can enter whatever names you
like. When you click the submit button (which has a label of "GO"), the browser will load welcome.php and
automatically add the variables and their values to the query string for you. It retrieves the names of the

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

27

variables from the name attributes of the input type="text" tags, and it obtains the values from the
information the user typed into the text fields.

The method attribute of the form tag is used to tell the browser how to send the variables and their values
along with the request. A value of get (as used above) causes them to be passed in the query string, but
there is an alternative. It’s not always desirable – or even technically feasible – to have the values appear in
the query string. What if we included a <textarea> tag in the form, to let the user enter a large amount of
text? A URL that contained several paragraphs of text in the query string would be ridiculously long, and
would exceed by far the maximum length of the URL in today's browsers. The alternative is for the browser
to pass the information invisibly, behind the scenes. The code for this looks exactly the same, but where we
set the form method to get in the last example, here we set it to post (welcome4.html):
<form action="welcome.php" method="post">
First Name: <input type="text" name="firstname" />

Last Name: <input type="text" name="lastname" />

<input type="submit" value="GO" />
</form>

This form is functionally identical to the previous one. The only difference is that the URL of the page that’s
loaded when the user clicks the "GO" button will not have a query string. On the one hand, this lets you
include large values, or sensitive values (like passwords) in the data that’s submitted by the form, without
their appearing in the query string. On the other hand, if the user bookmarks the page that results from their
submission of the form, that bookmark will be useless, as it doesn’t contain the submitted values. This,
incidentally, is the main reason that search engines like AltaVista use the query string to submit search
terms. If you bookmark a search results page on AltaVista, you can use that bookmark to perform the same
search again later, because the search terms are contained in the URL.

That covers the basics of using forms to produce rudimentary user interaction with PHP. We'll cover more
advanced issues and techniques in later examples.

Control Structures
All the examples of PHP code that we’ve seen so far have been either simple, one-statement scripts that
output a string of text to the Web page, or have been series of statements that were to be executed one after
the other in order. If you've ever written programs in any other languages (be they JavaScript, C, or BASIC)
you already know that practical programs are rarely so simple.

PHP, just like any other programming language, provides facilities that allow us to affect the flow of control
in a script. That is, the language contains special statements that permit you to deviate from the one-after-
another execution order that has dominated our examples so far. Such statements are called control
structures. Don't get it? Don't worry! A few examples will illustrate perfectly.

The most basic, and most often-used, control structure is the if-else statement. Here's what it looks like:
if (condition) {
 // Statement(s) to be executed if
 // condition is true.
} else {
 // (Optional) Statement(s) to be
 // executed if condition is false.
}

This control structure lets us tell PHP to execute one set of statements or another, depending on whether
some condition is true or false. If you'll indulge my vanity for a moment, here's an example that shows a
twist on the welcome.php file we created earlier:
if ($name == "Kevin") {
 echo("Welcome, oh glorious leader!");
} else {
 echo("Welcome, $name!");
}

Now, if the name variable passed to the page has a value of Kevin, a special message will be displayed.
Otherwise, the normal message will be displayed and will contain the name that the user entered.

As indicated in the code structure above, the else clause (that part of the if-else statement that says
what to do if the condition is false) is optional. Let's say you wanted to display the special message above

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

28

only if the appropriate name was entered, but otherwise, you didn’t want to display any message. Here's
how the code would look:
if ($name == "Kevin") {
 echo("Welcome, oh glorious leader!");
}

The == used in the condition above is the PHP operator that’s used to compare two values to see whether
they’re equal. It's important to remember to type the double-equals, because if you were to use a single
equals sign you'd be using the assignment operator discussed above. So, instead of comparing the variable to
the designated value, instead, you’d assign a new value to the variable (an operation which, incidentally,
evaluates as true). This would not only cause the condition to always be true, but might change the value in
the variable you’re checking, which could cause all sorts of problems.

Conditions can be more complex than a single comparison for equality. Recall that we modified
welcome.php to take a first and last name. If we wanted to display a special message only for a particular
person, we'd have to check the values of both names (welcome3.php):
if ("Kevin" == $firstname and "Yank" == $lastname) {
 echo("Welcome, oh glorious leader!");
} else {
 echo("Welcome to my Website, $firstname $lastname!");
}

This condition will be true if and only if $firstname has a value of Kevin and $lastname has a value of
Yank. The word and in the above condition makes the whole condition true only if both of the comparisons
evaluate to true. Another such operator is or, which makes the whole condition true if one or both of two
simple conditions are true. If you're more familiar with the JavaScript or C forms of these operators (&& and
|| for and and or respectively), they work in PHP as well.

We'll look at more complicated comparisons as the need arises. For the time being, a general familiarity with
the if-else statement is sufficient.

Another often-used PHP control structure is the while loop. Where the if-else statement allowed us to
choose whether or not to execute a set of statements depending on some condition, the while loop allows us
to use a condition to determine how many times to repeatedly execute a set of statements. Here's what a
while loop looks like:
while (condition) {
 // statement(s) to execute over
 // and over as long as condition
 // remains true
}

This works very similarly to an if-else statement without an else clause. The difference arises when the
condition is true and the statement(s) are executed. Instead of continuing the execution with the statement
that follows the closing brace (}), the condition is checked again. If the condition is still true, then the
statement(s) are executed a second time, and a third, and will continue to be executed as long as the
condition remains true. The first time the condition evaluates false (whether it's the first time it's checked or
the one-hundred-and-first), execution jumps immediately to the next statement that follows the while loop
(after the closing brace).

Loops like these come in handy whenever you're working with long lists of things (such as jokes stored in a
database... hint-hint!), but for now we'll illustrate with a trivial example: counting to ten. This script is
available as count10.php in the code archive (located at
http://sitepoint.com/books/?bookid=More).
$count = 1;
while ($count <= 10) {
 echo("$count ");
 $count++;
}

It looks kind of scary, I know, but let me talk you through it line by line. The first line creates a variable
called $count and assigns it a value of 1. The second line is the start of a while loop, the condition for
which is that the value of $count is less than or equal (<=) to 10. The third and fourth lines make up the
body of the while loop, and will be executed over and over, as long as that condition holds true. The third

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

29

line simply outputs the value of $count followed by a space. The fourth line adds one to the value of
$count ($count++ is a shortcut for $count = $count + 1 -- both will work).

So here's what happens when this piece of code is executed. The first time the condition is checked, the value
of $count is 1, so the condition is definitely true. The value of $count (1) is output, and $count is given a
new value of 2. The condition is still true the second time it is checked, so the value (2) is output and a new
value (3) is assigned. This process continues, outputting the values 3, 4, 5, 6, 7, 8, 9, and 10. Finally,
$count is given a value of 11, and the condition is false, which ends the loop. The net result of the code is to
output the string "1 2 3 4 5 6 7 8 9 10 ".

The condition in this example used a new operator: <= (less than or equal). Other numerical comparison
operators of this type include >= (greater than or equal), < (less than), > (greater than), and != (not equal).
That last one also works when comparing text strings, by the way.

Another type of loop that is designed specifically to handle examples like that above, where we are counting
through a series of values until some condition is met, is called a for loop. Here’s what they look like
for (initialize; condition; update) {
 // statement(s) to execute over
 // and over as long as condition
 // remains true after each update
}

Here’s what the above while loop example looks like when implemented as a for loop:
for ($count = 1; $count <= 10; $count++) {
 echo("$count ");
}

Multi-Purpose Pages
Let's say you wanted to construct your site so that it showed the visitor's name at the top of every page. With
our custom welcome message example above, we're halfway there already. Here are the problems we'll need
to overcome to extend the example into what we need:

! We need the name on every page of the site, not just one.

! We have no control over which page of our site users will view first.

The first problem isn't too hard to overcome. Once we have the user's name in a variable on one page, we
can pass it with any request to another page by adding the name to the query string of all links:
<a href="newpage.php?name=<?php echo(urlencode($name)); ?>"> A link

Notice that we've embedded PHP code right in the middle of an HTML tag. This is perfectly legal, and will
work just fine. A shortcut exists for those times when you simply want to echo a PHP value in the middle of
your HTML code. The shortcut looks like this:
<a href="newpage.php?name=<?=urlencode($name)?>"> A link

The tags <?= ... ?> perform the same function as the much longer code <?php echo(...); ?>.
This is a handy shortcut that I'll use several times through the rest of this book.

You're familiar with the echo function, but urlencode is probably new to you. This function takes any
special characters in the string (for example, spaces) and converts them into the special codes they need to be
in order to appear in the query string. For example, if the $name variable had a value of "Kevin Yank",
then as spaces are not allowed in the query string, the output of urlencode (and thus the string output by
echo) would be "Kevin+Yank". This would then be automatically converted back by PHP when it created
the $name variable in newpage.php.

Okay, so we've got the user's name being passed with every link in our site. Now all we need is to get that
name in the first place. In our welcome message example, we had a special HTML page with a form in it that
prompted the user for his or her name. The problem with this (identified by the second point above) is that
we couldn't -- nor would we wish to -- force the user to enter our Web site by that page every time he or she
visited our site.

The solution is to have every page of our site check to see if a name has been specified, and prompt the user
for a name if necessary. This means that every page of our site will either display its content, or a prompt the

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

30

user to enter a name, depending on whether the $name variable is found to have a value. If this is beginning
to sound to you like a good place for an if-else statement, you're a quick study!

We’ll refer to pages that are capable of displaying completely different content depending on some
condition, as "multi-purpose pages". The code of a multi-purpose page looks something like this:
<html>
<head>
<title> Multi-Purpose Page Outline </title>
</head>
<body>

<?php if (condition) { ?>

<!-- HTML content to display if condition is true -->

<?php } else { ?>

<!-- HTML content to display if condition is false -->

<?php } ?>

</body>
</html>

This may confuse you at first, but in fact this is just a normal if-else statement with HTML code sections
that depend on the condition, instead of PHP statements. This example illustrates one of the big selling
points of PHP: that you can switch in and out of "PHP mode" whenever you like. If you think of <?php as
the command to switch into "PHP mode", and ?> as the command to go back into "normal HTML mode", the
above example should make perfect sense.

There’s an alternate form of the if-else statement that can make your code more readable in situations
like this. Here's the outline for a multi-purpose page using the alternate if-else form:
<html>
<head>
<title> Multi-Purpose Page Outline </title>
</head>
<body>

<?php if (condition): ?>

<!-- HTML content to display if condition is true -->

<?php else: ?>

<!-- HTML content to display if condition is false -->

<?php endif; ?>

</body>
</html>

Okay, now that we have all the tools we need in hand, let's look at a sample page of our site
(samplepage.php in the code archive located at http://sitepoint.com/books/?bookid=More):
<html>
<head>
<title> Sample Page </title>
</head>
<body>

<?php if (!isset($name)): ?>

 <!-- No name has been provided, so we
 prompt the user for one. -->

 <form action="<?=$PHP_SELF?>" method="get">
 Please enter your name: <input type="text" name="name" />
 <input type="submit" value="GO" />
 </form>

 Getting Started with PHP

Build Your Own Database Driven Website Using PHP & MySQL

31

<?php else: ?>

 <p>Your name: <?=$name?></p>

 <p>This paragraph contains a <a
href="newpage.php?name=<?=urlencode($name)?>">link that passes the name
variable on to the next document.</p>

<?php endif; ?>

</body>
</html>

There are two new tricks in the above code, but overall you should be pretty comfortable with the way it
works. First of all, we’re using a new function called isset in the condition. This function returns (outputs)
a value of true if the variable it is given has been assigned a value (i.e. if a name has been provided), and
false if the variable does not exist (i.e. if a name has not yet been given). The exclamation mark (also known
as the negation operator, or the not operator) that appears before the name of the function reverses the
returned value from true to false or vice-versa. Thus, the form is displayed when the $name variable is not
set. The second new trick is the use of the variable $PHP_SELF to specify the action attribute of the form
tag. This variable is one of several that PHP always gives a value to automatically. In particular, $PHP_SELF
will always be set to the URL of the current page. This gives us an easy way to create a form that, when
submitted, will load the very same page, but this time with the $name variable specified.

If we structure all the pages on our site in this way, visitors will be prompted for their name by the first page
they attempt to view, whichever page this happens to be. Once they enter their name and click "GO", they’ll
be presented with the exact page they requested. The name they entered is then passed in the query string of
every link from that point onward, ensuring that they are prompted only the once.

Summary
In this chapter, we've had a taste of the PHP server-side scripting language by exploring all the basic
language features: statements, variables, operators, and control structures. The sample applications we've
seen have been pretty simple, but don't let that dissuade you. The real power of PHP is in the hundreds of
built-in functions that let you do everything: access data in a MySQL database, send e-mail, dynamically
generate images, and even create Adobe Acrobat PDF files on the fly.

In Chapter 4, we'll delve into the MySQL functions in PHP, to show how to publish the joke database that
we created in Chapter 2 on the Web. This will set the scene for the ultimate goal of this series – creating a
complete content management system for your Web site in PHP and MySQL.

 Publishing MySQL Data on the Web

4 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

32

This is it -- the stuff you signed up for! In this chapter, you'll learn how to take information stored in a
database and display it on a Web page for all to see. So far you have installed and learned the basics of
MySQL, a relational database engine, and PHP, a server-side scripting language. Now you'll see how to use
these two new tools together to create a true database-driven Web site!

A Look Back at First Principles
Before we leap forward, it's worth a brief look back to remind ourselves of the goal we’re working toward.
We have two powerful, new tools at our disposal: the PHP scripting language, and the MySQL database
engine. It's important to understand how these two will fit together.

The whole idea of a database-driven Web site is to allow the content of the site to reside in a database, and
for that content to be dynamically pulled from the database to create Web pages for people to view with a
regular Web browser. So on one end of the system you have a visitor to your site who uses a Web browser to
load http://www.yoursite.com/, and expects to view a standard HTML Web page. On the other end
you have the content of your site, which sits in one or more tables in a MySQL database that only
understands how to respond to SQL queries (commands).

Web Server
Dynamic
Page Obtain

Data PHP Web Browser

MySQL
PHP
file

Page
Request

As shown in the diagram above, the PHP scripting language is the go-between that speaks both languages. It
processes the page request and fetches the data from the MySQL database, then spits it out dynamically as
the nicely-formatted HTML page that the browser expects. With PHP, you can write the presentation aspects
of your site (the fancy graphics and page layouts) as "templates" in regular HTML. Where the content
belongs in those templates, you use some PHP code to connect to the MySQL database and -- using SQL
queries just like those you used to create a table of jokes in Chapter 2 -- retrieve and display some content in
its place.

Just so it's clear and fresh in your mind, this is what will happen when someone visits a page on our
database-driven Web site:

! The visitor's Web browser requests the Web page using a standard URL.

! The Web server software (Apache, IIS, or whatever) recognizes that the requested file is a PHP
script, and so the server interprets the file using its PHP plug-in, before responding to the page
request.

! Certain PHP commands (which we have yet to learn) connect to the MySQL database and request
the content that belongs in the Web page.

! The MySQL database responds by sending the requested content to the PHP script.

! The PHP script stores the content into one or more PHP variables, and then uses the now-familiar
echo function to output the content as part of the Web page.

http://www.yoursite.com/

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

33

! The PHP plug-in finishes up by handing a copy of the HTML it has created to the Web server.

! The Web server sends the HTML to the Web browser as it would a plain HTML file, except that
instead of coming directly from an HTML file, the page is the output provided by the PHP plug-in.

Connecting to MySQL with PHP
Before you can get content out of your MySQL database for inclusion in a Web page, you must first know
how to establish a connection to MySQL from inside a PHP script. Back in Chapter 2, you used a program
called mysql that allowed you to make such a connection. PHP has no need of any special program,
however; support for connecting to MySQL is built right into the language. The following PHP function call
establishes the connection:
mysql_connect(address, username, password);

Here, address is the IP address or hostname of the computer on which the MySQL server software is
running ("localhost" if it’s running on the same computer as the Web server software), and username
and password are the same MySQL user name and password you used to connect to the MySQL server in
Chapter 2.

You may or may not remember that functions in PHP usually return (output) a value when they are called.
Don't worry if this doesn't ring any bells for you -- it's a detail that I glossed over when I first discussed
functions. In addition to doing something useful when they are called, most functions output a value, and
that value may be stored in a variable for later use. The mysql_connect function shown above, for
example, returns a number that identifies the connection that has been established. Since we intend to make
use of the connection, we should hold onto this value. Here's an example of how we might connect to our
MySQL server.
$dbcnx = mysql_connect("localhost", "root", "mypasswd");

As described above, the values of the three function parameters may differ for your MySQL server. What's
important to see here is that the value returned by mysql_connect (which we'll call a connection identifier)
is stored in a variable named $dbcnx.

Since the MySQL server is a completely separate piece of software, we must consider the possibility that the
server is unavailable, or inaccessible due to a network outage, or because the username/password
combination you provided is not accepted by the server. In such cases, the mysql_connect function
doesn't return a connection identifier (since no connection is established). Instead, it returns false. This
allows us to react to such failures using an if statement:
$dbcnx = @mysql_connect("localhost", "root", "mypasswd");
if (!$dbcnx) {
 echo("<p>Unable to connect to the " .
 "database server at this time.</p>");
 exit();
}

There are three new tricks in the above code fragment. First, we have placed an @ symbol in front of the
mysql_connect function. Many functions, including mysql_connect, automatically display ugly error
messages when they fail. Placing an @ symbol in front of the function name tells the function to fail silently,
allowing us to display our own, friendlier error message.

Next, we put an exclamation point in front of the $dbcnx variable in the condition of the if statement. The
exclamation point is the PHP negation operator, which basically flips a false value to true, or a true value to
false. Thus, if the connection fails and mysql_connect returns false, !$dbcnx will evaluate to true, and
cause the statements in the body of our if statement to be executed. Alternatively, if a connection was made,
the connection identifier stored in $dbcnx will evaluate to true (any number other than zero is considered
"true" in PHP), so !$dbcnx will evaluate to false, and the statements in the if statement will not be
executed.

The last new trick is the exit function, which is the first example that we’ve encountered of a function that
takes no parameters. All this function does is cause PHP to stop reading the page at this point. This is a good
response to a failed database connection, because in most cases the page will be unable to display any useful
information without that connection.

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

34

As in Chapter 2, the next step, once a connection is established, is to select the database you want to work
with. Let's say we want to work with the joke database we created in Chapter 2. The database we created
was called jokes. Selecting that database in PHP is just a matter of another function call:
mysql_select_db("jokes", $dbcnx);

Notice we use the $dbcnx variable that contains the database connection identifier to tell the function which
database connection to use. This parameter is actually optional. When it’s omitted, the function will
automatically use the link identifier for the last connection opened. This function returns true when it’s
successful and false if an error occurs. Once again, it’s prudent to use an if statement to handle errors:
if (! @mysql_select_db("jokes")) {
 echo("<p>Unable to locate the joke " .
 "database at this time.</p>");
 exit();
}

Notice that this time, instead of assigning the result of the function to a variable and then checking if the
variable is true or false, I have simply used the function call itself as the condition. This may look a little
strange, but it's a very commonly used shortcut. To check if the condition is true or false, PHP executes the
function and then checks its return value – exactly what we need to happen.

With a connection established and a database selected, we are now ready to begin using the data stored in
the database.

Sending SQL Queries with PHP
In Chapter 2, we connected to the MySQL database server using a program called mysql that allowed us to
type SQL queries (commands) and view the results of those queries immediately. In PHP, a similar
mechanism exists: the mysql_query function.
mysql_query(query, connection_id);

Here query is a string that contains the SQL command we want to execute. As with mysql_select_db,
the connection identifier parameter is optional.

What this function returns will depend on the type of query being sent. For most SQL commands,
mysql_query returns either true or false to indicate success or failure respectively. Consider the following
example, which attempts to create the Jokes table we created in Chapter 2:
$sql = "CREATE TABLE Jokes (
 ID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 JokeText TEXT,
 JokeDate DATE NOT NULL
)";
if (@mysql_query($sql)) {
 echo("<p>Jokes table successfully created!</p>");
} else {
 echo("<p>Error creating Jokes table: " .
 mysql_error() . "</p>");
}

Again, we use the @ trick to suppress any error messages produced by mysql_query, and instead print out
a friendlier error message of our own. The mysql_error function used here returns a string of text that
describes the last error message that was sent by the MySQL server.

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data), MySQL also keeps track of
the number of table rows (entries) that were affected by the query. Consider the SQL command below,
which we used in Chapter 2 to set the dates of all jokes that contained the word "chicken":
$sql = "UPDATE Jokes SET JokeDate='1990-04-01'
 WHERE JokeText LIKE '%chicken%'";

When we execute this query, we can use the mysql_affected_rows function to view the number of rows
that were affected by this update:
if (@mysql_query($sql)) {
 echo("<p>Update affected " . mysql_affected_rows() .
 " rows.</p>");
} else {

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

35

 echo("<p>Error performing update: " . mysql_error() .
 "</p>");
}

SELECT queries are treated a little differently, since they can retrieve a lot of data, and PHP must provide
ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the mysql_query function returns either true (success) or false (failure). For SELECT
queries this just isn't enough. You'll recall that SELECT queries are used to view stored data in the database.
In addition to indicating whether the query succeeded or failed, PHP must also receive the results of the
query. As a result, when it processes a SELECT query, mysql_query returns a number that identifies a
"result set", which contains a list of all the rows (entries) returned from the query. False is still returned if the
query fails for any reason.
$result = @mysql_query("SELECT JokeText FROM Jokes");
if (!$result) {
 echo("<p>Error performing query: " . mysql_error() .
 "</p>");
 exit();
}

Provided no error was encountered in processing the query, the above code will place a result set that
contains the text of all the jokes stored in the Jokes table into the variable $result. As there’s no practical
limit on the number of jokes in the database, that result set can be pretty big.

We mentioned before that the while loop is a useful control structure for dealing with large amounts of
data. Here's an outline of the code to process the rows in a result set one at a time:
while ($row = mysql_fetch_array($result)) {
 // process the row...
}

The condition for the while loop probably doesn't much resemble the conditions you're used to, so let me
explain how it works. Consider the condition as a statement all by itself:
$row = mysql_fetch_array($result);

The mysql_fetch_array function accepts a result set as a parameter (stored in the $result variable in
this case), and returns the next row in the result set as an array. If you're not familiar with the concept of
arrays, don't worry: we'll discuss it in a moment. When there are no more rows in the result set,
mysql_fetch_array instead returns false.

Now, the above statement assigns a value to the $row variable, but at the same time the whole statement
itself takes on that same value. This is what lets us use the statement as a condition in our while loop. Since
while loops keep looping until their condition evaluates to false, the loop will occur as many times as there
are rows in the result set, with $row taking on the value of the next row each time the loop executes. All
that's left is to figure out how to get the values out of the $row variable each time the loop runs.

Rows of a result set are represented as arrays. An array is a special kind of variable that contains multiple
values. If you think of a variable as a box that contains a value, then an array can be thought of as a box with
compartments, where each compartment is able to store an individual value. In the case of our database row,
the compartments are named after the table columns in our result set. If $row is a row in our result set, then
$row["JokeText"] is the value in the JokeText column of that row. So here's what our while loop
should look like if we want to print the text of all the jokes in our database:
while ($row = mysql_fetch_array($result)) {
 echo("<p>" . $row["JokeText"] . "</p>");
}

To summarize, here's the complete code of a PHP Web page that will connect to our database, fetch the text
of all the jokes in the database, and display them in HTML paragraphs. The code of this example is available
as jokelist.php in the code archive (located at http://sitepoint.com/books/?bookid=More).
<html>
<head>
<title> Our List of Jokes </title>
<head>

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

36

<body>
<?php

 // Connect to the database server
 $dbcnx = @mysql_connect("localhost", "root",
 "mypasswd");
 if (!$dbcnx) {
 echo("<p>Unable to connect to the " .
 "database server at this time.</p>");
 exit();
 }

 // Select the jokes database
 if (! @mysql_select_db("jokes")) {
 echo("<p>Unable to locate the joke " .
 "database at this time.</p>");
 exit();
 }

?>
<p> Here are all the jokes in our database: </p>
<blockquote>

<?php

 // Request the text of all the jokes
 $result = @mysql_query("SELECT JokeText FROM Jokes");
 if (!$result) {
 echo("<p>Error performing query: " . mysql_error() .
 "</p>");
 exit();
 }

 // Display the text of each joke in a paragraph
 while ($row = mysql_fetch_array($result)) {
 echo("<p>" . $row["JokeText"] . "</p>");
 }

?>

</blockquote>
</body>
</html>

Inserting Data into the Database
In this section, we'll see how we can use all the tools at our disposal to allow visitors to our site to add their
own jokes to the database. If you enjoy a challenge, you might want to try to figure this out on your own
before you read any further. There is precious little new material in this section. It's mostly just a sample
application of everything we've learned so far.

If you want to let visitors to your site type in new jokes, you'll obviously need a form. Here's the code for a
form that will fit the bill:
<form action="<?=$PHP_SELF?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>
</form>

As we've seen before, this form, when submitted, will load the very same page (due to the use of the
$PHP_SELF variable for the form's ACTION attribute), but with two variables attached to the request. The
first, $joketext, will contain the text of the joke as typed into the text area. The second, $submitjoke,
will always contain the value "SUBMIT", which can be used as a sign that a joke has been submitted.

To insert the submitted joke into the database, we just use mysql_query to run an INSERT query, using the
$joketext variable for the value to be submitted:

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

37

if ($submitjoke == "SUBMIT") {
 $sql = "INSERT INTO Jokes SET
 JokeText='$joketext',
 JokeDate=CURDATE()";
 if (@mysql_query($sql)) {
 echo("<p>Your joke has been added.</p>");
 } else {
 echo("<p>Error adding submitted joke: " .
 mysql_error() . "</p>");
 }
}

The one new trick in this whole example appears in the SQL code here. Note the use of the MySQL function
CURDATE() to assign the current date as the value of the JokeDate column to be inserted into the database.
MySQL actually has dozens of these functions, but we'll only introduce them as required. For a complete
function reference, refer to Appendix B.

We now have the code that will allow a user to type a joke and add it to our database. All that remains is to
slot it into our existing joke viewing page in a useful fashion. Since most users will only want to view our
jokes, we don't want to mar our page with a big, ugly form unless the user expresses an interest in adding a
new joke. For this reason, our application is well suited for implementation as a multi-purpose page. Here's
the code (available as jokes.php in the code archive located at
http://sitepoint.com/books/?bookid=More):
<html>
<head>
<title> The Internet Joke Database </title>
</head>
<body>
<?php
 if (isset($addjoke)): // If the user wants to add a joke
?>

<form action="<?=$PHP_SELF?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>
</form>

<?php
 else: // Default page display

 // Connect to the database server
 $dbcnx = @mysql_connect("localhost", "root",
 "mypasswd");
 if (!$dbcnx) {
 echo("<p>Unable to connect to the " .
 "database server at this time.</p>");
 exit();
 }

 // Select the jokes database
 if (! @mysql_select_db("jokes")) {
 echo("<p>Unable to locate the joke " .
 "database at this time.</p>");
 exit();
 }

 // If a joke has been submitted,
 // add it to the database.
 if ($submitjoke == "SUBMIT") {
 $sql = "INSERT INTO Jokes SET
 JokeText='$joketext',
 JokeDate=CURDATE()";
 if (@mysql_query($sql)) {
 echo("<p>Your joke has been added.</p>");
 } else {
 echo("<p>Error adding submitted joke: " .
 mysql_error() . "</p>");

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

38

 }
 }

 echo("<p> Here are all the jokes in our database:" .
 "</p>");

 // Request the text of all the jokes
 $result = @mysql_query("SELECT JokeText FROM Jokes");
 if (!$result) {
 echo("<p>Error performing query: " .
 mysql_error() . "</p>");
 exit();
 }

 // Display the text of each joke in a paragraph
 while ($row = mysql_fetch_array($result)) {
 echo("<p>" . $row["JokeText"] . "</p>");
 }

 // When clicked, this link will load this page
 // with the joke submission form displayed.
 echo("<p>" .
 "Add a Joke!</p>");

 endif;

?>
</body>
</html>

There we go! With a single file that contains a little PHP code we’re able to view existing jokes, and add
jokes to, our MySQL database.

A Challenge
As homework, see if you can figure out how to put a link labeled "Delete this Joke" next to each joke on the
page that, when clicked, will remove that joke from the database and display the updated joke list. Here are
a few hints to get you started:

! You'll still be able to do it all in a single multi-purpose page.

! You'll need to use the SQL DELETE command, which we learned about in Chapter 2.

! This is the tough one. To delete a particular joke, you'll need to be able to uniquely identify it. The
ID column in the Jokes table was designed to serve this purpose. You're going to have to pass the
ID of the joke to be deleted with the request to delete a joke. The query string of the "Delete this
Joke" link is a perfect place to put this value.

If you think you have the answer, or if you’d just like to see the solution, turn the page. Good luck!

Summary
In this chapter, you learned some new PHP functions that allow you to interface with a MySQL database
server. Using these functions, you built your first database-driven Web site which published the Jokes
database online, and allowed visitors to add jokes of their own to it.

In Chapter 5, we go back to the MySQL command line. We’ll learn how to
use relational database principles and advanced SQL queries to represent more complex types of
information, and give our visitors credit for the jokes they add!

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

39

"Homework" Solution
Here's the solution to the "homework" challenge posed above. These changes were required to insert a
"Delete this Joke" link next to each joke:

! Previously, we passed an $addjoke variable with our "Add a Joke!" link at the bottom of the page
to signal that our script should display the joke entry form, instead of the usual list of jokes. In a
similar fashion, we pass a $deletejoke variable with our "Delete this Joke" link to indicate our
desire to have a joke deleted.

! For each joke, we fetch the ID column from the database, along with the JokeText column, so that
we know which ID is associated with each joke in the database.

! We set the value of the $deletejoke variable to the ID of the joke that we’re deleting. To do this,
we insert the ID value fetched from the database into the HTML code for the "Delete this Joke" link
of each joke.

! Using an if statement, we watch to see if $deletejoke is set to a particular value (through the
isset function) when the page loads. If it is, we use the value to which it is set (the ID of the joke to
be deleted) in an SQL DELETE statement that deletes the joke in question.

Here's the complete code, which is also available as challege.php in the code archive (located at
http://sitepoint.com/books/?bookid=More). If you have any questions, don't hesitate to post them
in the SitePoint.com forums!
<html>
<head>
<title> The Internet Joke Database </title>
</head>
<body>
<?php
 if (isset($addjoke)): // The user wants to add a joke
?>

<form action="<?=$PHP_SELF?>" method="post">
<p>Type your joke here:

<textarea name="joketext" rows="10" cols="40" wrap>
</textarea>

<input type="submit" name="submitjoke" value="SUBMIT" />
</p>
</form>

<?php
 else:

 // Connect to the database server
 $dbcnx = @mysql_connect("localhost", "root",
 "mypasswd");
 if (!$dbcnx) {
 echo("<p>Unable to connect to the " .
 "database server at this time.</p>");
 exit();
 }

 // Select the jokes database
 if (! @mysql_select_db("jokes")) {
 echo("<p>Unable to locate the joke " .
 "database at this time.</p >");
 exit();
 }

 // If a joke has been submitted,
 // add it to the database.
 if ($submitjoke == "SUBMIT") {
 $sql = "INSERT INTO Jokes SET
 JokeText='$joketext',
 JokeDate=CURDATE()";
 if (@mysql_query($sql)) {
 echo("<P>Your joke has been added.</P>");
 } else {

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

40

 echo("<P>Error adding submitted joke: " .
 mysql_error() . "</P>");
 }
 }

 // If a joke has been deleted,
 // remove it from the database.
 if (isset($deletejoke)) {
 $sql = "DELETE FROM Jokes
 WHERE ID=$deletejoke";
 if (@mysql_query($sql)) {
 echo("<p>The joke has been deleted.</p>");
 } else {
 echo("<p>Error deleting joke: " .
 mysql_error() . "</p>");
 }
 }

 echo("<p> Here are all the jokes in our database: " .
 "</p>");

 // Request the ID and text of all the jokes
 $result = @mysql_query(
 "SELECT ID, JokeText FROM Jokes");
 if (!$result) {
 echo("<p>Error performing query: " .
 mysql_error() . "</p>");
 exit();
 }

 // Display the text of each joke in a paragraph
 // with a "Delete this Joke" link next to each.
 while ($row = mysql_fetch_array($result)) {
 $jokeid = $row["ID"];
 $joketext = $row["JokeText"];
 echo("<p>$joketext " .
 "" .
 "Delete this Joke</p>");
 }

 // When clicked, this link will load this page
 // with the joke submission form displayed.
 echo("<p>Add a ".
 "Joke!</p>");

 endif;

?>
</body>
</html>

 Publishing MySQL Data on the Web

Build Your Own Database Driven Website Using PHP & MySQL

41

What’s Next?

If you’ve enjoyed the first four chapters of Build Your Own Database Driven Website Using PHP & MySQL,
why not keep reading?

Explore the storage of binary data in MySQL, learn about cookies and sessions in PHP, and benefit from a
handy set of PHP and MySQL reference tables that include PHP and MySQL syntax, functions, column
types and more.

In the next 8 Chapters you’ll learn how to:

• Build a Working Content Management System
• Build an ecommerce shopping cart
• Automatically send email on triggered events
• Build a Web-based file repository or photo gallery
• Utilize sessions and cookies to track site visitors.
• And a whole lot more...

You shouldn’t be without this amazing hands-on desk reference!

Pick up your copy from SitePoint.com today!

"Kevin Yank has the extraordinary ability to introduce a new level of clarity and simplicity to a
powerful technology like MySQL. This book is a must-have for all Webmasters"

Matt Wagner, MySQL.com

http://sitepoint.com/books/?bookid=More
http://www.mysql.com/

	Who Should Read this Book
	What's in this Book
	
	Chapter 1: Installation
	Chapter 2: Getting Started with MySQL
	Chapter 3: Getting Started with PHP
	Chapter 4: Publishing MySQL Data on the Web
	Chapter 5: Relational Database Design
	Chapter 6: A Content Management System
	Chapter 7: Content Formatting and Submission
	Chapter 8: MySQL Administration
	Chapter 9: Advanced SQL
	Chapter 10: Advanced PHP
	Chapter 11: Storing Binary Data in MySQL
	Chapter 12: Cookies and Sessions in PHP

	Code Archive
	The Book
	Your Feedback
	Installation
	Welcome to the Show
	Windows Installation
	Installing MySQL
	Installing PHP

	Installing under Linux
	Installing MySQL
	Installing PHP

	Post-Installation Setup Tasks
	If Your Web Host Provides PHP and MySQL
	Your First PHP Script
	Summary

	Getting Started with MySQL
	An Introduction to Databases
	Logging On to MySQL
	So what's SQL?
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Summary

	Getting Started with PHP
	Introducing PHP
	Basic Syntax and Commands
	Variables and Operators
	User Interaction and Forms
	Control Structures
	Multi-Purpose Pages
	Summary

	Publishing MySQL Data on the Web
	A Look Back at First Principles
	Connecting to MySQL with PHP
	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	A Challenge
	Summary
	"Homework" Solution

	Untitled
	Untitled

