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Abstract

High-level synthesis is the process of translating a high-level program like specification of the be-
havior of a digital circuit into a structural design in terms of interconnected set of P..egister- Transfer
level components. Component selection and pipelining (CS&P) is one of the important problems in
HLS. The time complexity of the exhaustive search algorithm for this problem is exponential. In this
paper, we investigate the application of Stochastic Evolution (SE) for solving component selection and
pipelining and compare it with simulated annealing (SA). A realistic component library with multiple
implementations of o.perators is used for component selection. Pipelining is done based on the con-
straints of latency and pipestage delay that are specified. Experimental results on different types of
DFG's are reported.

Keywords: Stochastic evolution, Simulated annealing, Component Selection, Pipelining,
High-Level Synthesis, Search Algorithms.

INTRODUCTION1

High-level synthesis (HLS) [1] is the process of translating a high level program like specification of the
behavior of a digital circuit into a structural design in terms of interconnected set of Register-Transfer
(RT) level components via some intermediate representation. For most applications such as those in
digital signal processing (DSP), etc., the intermediate form (IF), as indicated in Figure 1, is a data flow
graph (D FG). Nodes of the D FG correspond to operations and arc determine the flow of data in the circuit.
Operations scheduling and hardware allocation are two important phases in HLS of circuits from behavioral
descriptions. Scheduling distributes the executions of operations throughout time steps. Allocation of
hardware cells includes: functional unit, register and bus allocation, and their interconnections [2, 3, 4].

To improve the performance of the generated hardware, the DFG can also be pipelined. Pipelining
involves placing registers at appropriate locations in the DFG (between operators) in order to improve
the throughput of the computation. Hardware units corresponding to operations are taken from a compo-
nentfceillibrary. Most component libraries contain several implementations of the same operator. Com-
ponent selection involves determining the best selection of components from a realistic library containing
many different implementations per operator. The different implementations differ in cost, area, speed,
etc. When such a library is available, it is necessary to combine pipelining with the selection of appropriate
components from the library to satisfy a given set of constraints. The goal of component selection and
pipelining is to maximize the use of slower components and minimize the use of faster components while
satisfying a given set of constraints.

In this paper we describe a heuristic based on stochastic evolution (SE) for component selection and
pipelining (gs&P). We pose CS&P as a combinatorial optimization problem, and compare the performance
of SE and simulated annealing (SA) on a set of randomly generated DFGs [5]. The paper is divided into
5 sections. In the following section (Section 2) we -present the background of the work. Definitions, an
example, previous work (literature review) and the state space searched are discussed in the section. In
Section 3 we introduce the basic SE algorithm, and its application to the CS&P problem. Details of
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Figure 1: Steps involved in HLS.

the general iterative heuristic, and its adaptation to efficiently solve the CS&P problem are presented.
Experimental results and ct>mparison with the Simulated Annealing algorithm are detailed in Section 4.
Finally, discussion and conclusions are presented in Section 5.

BACKGROUND2

The CS&P problem can be formally stated as follows: given a DFG(V, E) where V represents a set of
vertices, a set of directed edges E ~ V * V, a component library C L consisting of a set of three tuples
(Component_type, Area, Delay), and constraints on pipestage delay (PS_delay) and latency, it is required
to find an assignment of vertices to components and a partition so as to minimize the cost, where:

.PS..delay : Is the sample inter-arrival delay, which is the clock cycle of the design. That is, it is the
delay between the arrival of two consecutive input samples. It is also the inverse of throughput.

.Assignment: If we associate a type with every vertex v (called Vertex.1ype(v) , such as *, 7,
+, -), then an assignment is a function from V -+ CL such that if Assignment(v) = c then
V ertex.1ype( v) = C omponent.1 ype ( c). \

.Partition: A Partition is a collection of subset of vertices that belong to the same pipeline stage.

.Latency: Is the product n x PS-delay, where n is the number of pipestages. This is also the total
time taken before the first output appears.

Example
The DFG consists of vertices which correspond to different operators. The directed edges of the DFG
determine the interconnections between vertices, and the flow of data from the input to the output stages.
The DFG shown in Figure 2 is an example of the problem. It consists of three multipliers and two adders.
The PS-delay constraint is 10 nano-seconds and latency is 20 nano-seconds. The objective is to map
the components from the multiple component library shown in Table 1 onto the vertices to obtain a cost-
optimal solution. A cost-optimal solution is obtained by an appropriate mapping of components from the
component library onto the vertices of the DFG.

The multiple component library shows different types of operators along with the area and delay of
each of the operators. The availability of a large number of hardware units corresponding to each function
is assumed. Observe that for the same function, fast circuits have larger number of gates and hence are
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PS Delay <= 10 ns

Latency <= 20 ns

Figure 2: A sample data flow graph

Table 1: Example of a component library.

Mpy3 Mpy3

Figure 3: Two possible solutions to the example shown in Figure 1
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more costly. Different iterative/constructive techniques may be used to obtain a cost-optimal solution [6].
For the DFG given in Figure 2, and the component library given in Table 1, Figure 3(a) shows one possible
solution. This consists of two multipliers of type M py4, one of type M py3 and two adders of types Add3
and Add2 respectively. This solution requires three registers. The total cost is 1150 gates. Figure 3(b)
shows another solution, where three multipliers of type M py3 and two adders of types Add2 and Add4 are
used. This solution requires a total of four registers and its total cost is 1120 gates. Both the solutions
satisfy the PS_delay and the latency constraints.

Search Space

The CS&P problem can be phrased in terms of a state-space as follows. A state, or configuration, consists
of an assignment of vertices to components, and, selecting for an edge if it should have a register or not.
Let n be the total number of nodes (vertices), and m the number of edges in the DFG. Also, let k be the
nu.Jlber of ~ypes of components for each operator. Each node can be assigned from one of the k types
available in the component library. This can be done in k" ways. For each such assignment, the m edges
can have registers assigned to them in 2m ways. Therefore, the total number of possible configurations
are k" x 2m. Of course, all of these will not be legal configurations, since assignments of registers to
edges is restricted by the rules of pipelining, and all assignments of components to vertices may not satisfy
the given constraints. The size of the search space can be reduced to k" by selecting an assignment of
components to vertices from k" different possibilities, and then using a constructive heuristic to pipeline
such that latency and PS_delay constraints are satisfied.

Literature Review

There have been several optimization techniques suggested in the past for solving specific NP-hard prob-
lems. The existing optimization techniques [7] can be classified into two types: iterative and constructive.

Constructive heuristics to solve the CS&'P problem have been proposed in literature. In [8, 9], Bakshi
et al show, that by judiciously selecting vertices to be replaced by slower (less costly) ones, while satis-
fying constraints, cost can be reduced. Using their proposed heuristic, excellent results are obtained for
reasonably sized graphs. Other techniques for synthesizing pipelined datapaths have also been proposed.
Scheduling and hardware sharing (allocation) algorithm for synthesizing both pipelined and non-pipelined
datapaths is presented in [10]. Shin and Hwang [11] describe the SODAS-DSP system, a pipelined dat-
apath synthesis system, targeted for application specific DSP chip design. The design space of pipelined
datapaths is explored to produce an optimal design through facilitated user interaction. Tools like Se-
hwa [12] and those from GS corporation R&.D laboratories [10] have also been used to solve (component
selection and pipelining) CS&P problems. These tools pipeline a given DFG so as to optimize area and
performance for a given set of constraints, usually on the throughput or latency of the design. However
they all assume a single implementation for functiona1 units which forces them to use the same component
on non-critical and critical paths, resulting in designs that are inefficient and costly. Implementations of
SLIMOS [13] and MOSP [14] differ from the above approach. They start from a multiple implementation
library and then select one single implementation per operator, resulting in designs that contain single
implementations, thereby leading to the same design inefficiencies as previously discussed methods. A
method for pipelining VLSIjULSI systems for effective communication is proposed in [15]. This proposed
method is simple and effective. It also increases the performance. Further details and more on related
work can be found in [8, 10, 11, 12,13,14,15,16]. An excellent review of recent literature on constructive
methods to solve the CS&P problem is found in [9].

However, when the size of the graphs grow, then, due to the large search space it becomes very
difficult to reach a solution that satisfies constraints using only constructive techniques. It is then that
we have to resort to iterative heuristics which have a hill climbing capability. General iterative techniques
search the solution space by moving from one solution to another to obtain low-cost or optimal solutions.
Examples of iterative techniques are Simulated Annealing (SA) [3], Simulated Evolution [17], Tabu Search
(TS) [18, 19, 2], Genetic Algorithm (GA) [20] and Stochastic Evolution (SE) [21]. In the area of VLSI
design automation (DA) and HLS, iterative techniques have been used to solve a large number of hard
optimization problems. For example, in [2, 3], the problem of scheduling and allocation is solved using two
iterative techniques, namely GA and TS. Details of other work on the use of general iterative heuristics in
the area VLSI DA and HLS can be found in [22, 17, 23, 24, 25]. In the following section we present the
SE algorithm and a heuristic based on it to solve the CS&'P problem.
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Q)..3 SE FOR COMPONENT SELECTION & PIPELINING

The stochastic evolution algorithm is a general iterative heuristic [21] used to solve combinatorial opti-
mization problems. It is a special instance of a more general class of iterative heuristics discussed by Nahar
et.al, in [26]. It has been applied to several NP-hard problems such as the traveling salesman, network
bisection, and VLSI cell placement [17, 21,22]. It is stochastic because the decision to accept a move is
a stochastic decision. Moves which improve the cost function are accepted with probability one, and bad
moves may also get accepted with a non-zero probability. This feature gives SE hill-climbing property.

SE is conceptually simple and elegant. The algorithm is general, in the sense that it can be tailored
to solve most known combinatorial optimization problems. It has the capability of escaping local minima,
and is blind, i.e., it does not know when the optimal solution has been reached, and has to be told when
to stop. However, it has the following fundamental differences with the popular simulated annealing (SA)
algorithm [26, 27,28]: (1) in SA a perturbation of current state (solution) is a single (neighbor) move,
while for SE it is a compound move; (2) the acceptance probability of an up-hill move in SA decreases
with decreasing values of the temperature, whereas in SE such probability gets increased whenever the
sear~h is suspected to have reached some local optimum, and reset to its initial value otherwise; and (3) SE
introduces the concept of a reward (R) whereby the search algorithm cleverly rewards itself whenever it
makes a good move.

SE is based on the concept of state model [21]. A state model is described as a finite set M of movable
elements, a finite set L of locations, and the state S defined as as function S : M --+ L satisfying certain

constraints.

AlGORITHM Sto~astic_Evolution(Sol Po, R);

j* save initial state * j

j* initialize control parameter * j
j* initialize counter * j

SBel' = S = so;
CBel' = CCur = Cost(S);
P = Po;

p= 0;
Repeat

Cpre = Cost(S)
S = Perturb(S,p)
Cc:ur = Cost(S)
Update(p, Cpre, Cc:ur)
If (CCur < CBel') Then

SBel' = S

CBel' = CCur

p=p-R
Else

j* save best state * j

j* decrement counter by R * j

/* increment counter * /p=p+l
EndIf

Until p > R
Return (S8..t)

/* stopping criteria * /
/* report best state * /

Figure-4: Stochastic-Evolution Algorithm [21].

The Algorithm

The general structure of the algorithm is given in Figure 4. The input to SE is an initial state So, an
initial value Po of the control parameter p, and parameter R which is used in the stopping criterion. The
initial state So is a valid state satisfying all the constraints specified by the problem under consideration.
The initial state is assumed to be the best state on invocation of the algorithm.

After initialization, the algorithm enters a Repeat loop which is executed Until the counter p exceeds
R. Inside the Repeat body the cost of the current state is first calculated and stored in Cpr.. Then,
the Perturb function (see Figure 5) is invoked to make a compound move from the current state S.
Perturb scans the set of movable elements M according to some apriori ordering and moves every m E M
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FUNCTION Perturb(S,p);
For Each (m E M) according to some apriori ordering Do

S' =Neighbor(S, m);
Gain(m) = Cost(S) -Cost(S');
If (Gain(m) > Randint( -p, 0)) Then

S=S';
Endlf;

Endforj
S =Make..5tate(S); /* make sure S satisfies constraints * /

Return(S);

Figure 5: Perturb Algorithm.

to a new location I E L. Recall that the current state S is actually a function S : M -+ L. When a move
is performed, a new state S' is generated, which is a unique function S' : M -+ L such that S'(m) ¥ S(m)
for some movable object mE M. To evaluate the move, the gain function Gain(m) = Cost(S) -Cost(S')
is computed. If the calculated gain is greater than some integer r, the move is accepted and S' replaces S
as the current state. The integer r is randomly generated in the interval [-p, 0], i.e., -p ~ r ~ O. Since
r ~ 0, moves with positive gain are always accepted.

After scanning all the movable elements m EM, the Make-5tate routine makes sure that the final
state satisfies the state constraints. If the state constraints are not satisfied then Make-5tate reverses
the fewest number of latest moves until the state constraints are satisfied. This procedure is required when
perturbation moves that violate the state constraints are accepted.

PROCEDURE Update(p, Cpre, Ccur);
H (Cpre = Ccur) Then /* possibility of a local minimum * /

p = j(p); /* increment p to allow larger up-hill moves * /

Else
p = Po; /* re-initialize p * /

EndH-,

Figure 6: The Update procedure.

The new state generated by Perturb is returned to the main procedure as the current state, and its cost
is assigned to the variable Ccur. Then the routine Update (Figure 6) is invoked to compare the previous
cost Cpre to the current cost Ccur. If Cpre = Ccur, there is a good chance that the algorithm has reached
a local minimum and therefore, p is increased by replacing it by f(P) to allow larger up-hill moves.

The SE algorithm retains the state of lowest cost among those produced by the function Perturb. Each
time a state is found which has a lower cost than the best state so far, SE decrements the counter by R,
thereby rewarding itself by increasing the number of iterations. This allows a more detailed investigation
of the neighborhood of the newly found best solution. If 8, however, has a higher cost, pis incremented,
which is an indication of no improvements.

3.1 Algorithm Perturb_CS&P

The core of the SE algorithm is the procedure Perturb. In order to tailor SE for CS&P, we replace the
Perturb function in Figure 4 by another procedure Perturb_CS&P(S,p, It,pd); given in Figure 7.

Referring to Figure 7, the first time the Perturb_CS&P function is invoked, the initial solution is the
current solution. The procedure begins with a For loop, that is executed n times, where n corresponds to
the number of nodes in the DFG. The ordering of these nodes is fixed. The index i corr~ponds to label
of nodes, which are assigned randomly or assigned depending on the level of nodes in the DFG.
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-~Algorithm Perturb_CS&P(S, p, It, pd);
/* S is the current state * /
/* p is a non-negative control parameter * /
/* It is the latency constraint * /
/* pd is the PS_delay constraint * /

For i = 1 to n Do
Snew = Neighbor(Scur, i)
/* pipeline the DFG to determine number of registers * /

Pipeline(Snew) /* pipeline the DFG */
Gain = Cost(Scur) -Cost(Snew)
If (Gain> Randint(-p,O)) Then

Scur = Snew
EndH
If «Latency_Test(Snew)) = TRUE)) &&

(PS_Delay_Test(Snew)= TRUE))) Then
1 S, = Snew

EndH
Endfor
Intensify(Sc)
Return(Sc)
End

Figure 7: The Perturb function for CS&P.

In order to generate a neighbor state, the current state has to be disturbed. As discussed earlier, th~
search space can be traversed by either disturbing an edge (adding/deleting a register), or by disturbing
the assignment of the node. Disturbing an edge may lead to several illegal solutions, and will result it;
wastage of time. In our heuristic, the set of movable elements are restricted to the nodes of the D FG, each
of which can be replaced by another from the component library. A new (neighbor) solution is obtained b)
replacing one of the components of the DFG by another of the same function from the component library
This selection is done randomly. Of course, it is ensured that the delay of the replaced component is les~
than or equal to the specified PS_delay.

When a neighborhood move is made by disturbing the assignment of node from the component library
then the assignment of registers to edges has to be updated. This is because the pipestage delay am
latency constraints may no longer hold. The DFG with new values of component delays is pipelined, am
this may cause a change in the number of registers. Once a component is disturbed the number of register~
and the cost of the new state is calculated. The new cost resulting from the neighborhood move will b.
due to two terms: (1) the change in tl:e cost of the replaced component and (2) the change in the numbe
of registers. The cost function of the DFG is the cost (number of gates) of all the components of the DFC
and the number of pipeline registers. That is, the total cost of the solution is:

n

Total cost = Cost of Registers + E Costi (1
1=1 ---

where n is the number of vertices in the DFG. The cost of the DFG afr.er disturbing the current stat
changes. Suppose that a component with ID i whose current cost is C1 is replaced by component wit
cost Cr. If T is the current cost then the new cost is given by:

(~New Cost = T -Ci + Cr + New Cost of Registers

where the new cost of the registers is obtained after pipelining the DFG. If the gain (due to change in th
cost of the replaced component plus the change in the cost of registers) is less than the random numb(
generated between -p and 0, then the solution is rejected and the Perturb function is again executed wit
state Scu,. as the current state. If the gain is greater than the generated random number, then the sta1
Snew is accepted and the Perturb function is invoked with Snew as the current state Se,.,..
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Following the acceptance of the new state, a test is made to check if the state is valid. A state is valid
if the PS_delay constraint and the latency constraints are satisfied. If the test passes, then the new state
is saved in 8t.

To check for latency, the DFG is traversed from the inputs towards the output. If on any path between
the input and the output the latency of the DFG exceeds that of the specified latency then the state is
rejected. The PS_delay constraint is checked by scanning all the components of the DFG. If the delay
of the components in a particular PS stage is greater than the specified PS_delay, then ~lso the state is
rejected. For a particular state to be accepted as 81 it is necessary that both the constraints should be
satisfied. If the constraints are violated, then the state maybe accepted, (depending on the gain) but is
not saved in 81. The algorithm is repeated until all the vertices of the DFG are perturbed. By keeping
track of the last valid state that has to be returned at the end of the execution of the Perturb_CS&P, it
is not necessary to reverse any moves till a valid state is obtained.

After scanning and replacing all n nodes, the entire DFG is scanned starting from the inputs towards the
output and the,delays of the componellts between two consecutive registers is calculated. If the combined
delay of the components between two consecutive registers is less than the specified PS_delay then there is
a possibility of replacing one or more components by slower components of the same type. If this is possible
then some fast components are replaced by slower (cheaper) ones. The replacement of the components
should be done such that the the PS_delay and latency constraints are satisfied. By doing this the number
of slower components that are used increases and the cost of the solution decreases. This step is similar
to the greedy intensification step used in TS [18, 19].

The number of iterations for which the 8 E algorithm is made to run depends on the parameter R,
which specifies the reward criteria as explained earlier. In our implementation, we used a value of R
between 5 and 25.

Update Function Parameters for CS&:P

This function is responsible for updating the value of the control parameter p. Initially, a value equal
to the least difference between two components of the component library (CL) is assigned to p, and
f(p) was assigned a value equal to the maximum difference between two components in the Ct. While
experimenting with these values of p and f(p) it was observed that the initial drop in the cost was less
because only addersfsubtractors could be disturbed. As the iterations increased the changes in the costs
were high as the value of f(p) was high.

On keeping the value of f(p) large it was observed that the variations in costs were large. Therefore
f(p) had to be reduced. This was done by decreasing f(p) in steps of some multiple of 100 and continuing
until the range of variations were lessened. Further reduction of f(p) produced poor results. As the value
of p is equal to the least difference between any two components of the C L, only addersfsubtractors could
be disturbed. Therefore the value of p had to be increased so that multipliers could also be disturbed at
the initial value of p. Hence p was increased keeping f{p) constant. On increasing p a certain point was
reached beyond which poor results were obtained. Using the above scheme, best values for p and f(p)
were determined.

EXPERIMENTAL RESULTS AND COMPARISON WITH
SA

4

We used SE on problems of various sizes. However, we needed a measure of how good our solutions were
in terms of cost and the required run time. We decided to compare our heuristic with simulated annealing
(SA), another well known optimization technique. In this section we briefly describe SA and then discuss
our experimental runs using SE and SA.

Simulated Annealing
Simulated annealing is a technique for solving combinatorial optimization problems [26, 27]. It belongs
to a class of iterative improvement schemes. It has been applied to several combinatorial optimization
problems from various fields like traveling salesman problem, graph partitioning, quadratic assignment,
matching, linear arrangement, and scheduling. Resource constraint problems have also been solved using
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SA. In the areas of engineering, simulated annealing has been applied to VLSI physical design, i~;g~
processing, code design, facilities layout, network topology design etc., [29, 28].

Algorithm Simulated-Annealing(So, To, a,{3, M, M axtime)
/* So is the initial solution * /
/* To is the initial temperature * /
/* a is the cooling rate * /
/* {3 is a constant * /
/* M represents the time until the next parameter is updated * /
/* M ax time is the total allowed time for the annealing process * /

begin
T=To
Sc = So
Time = 0

-Repeat
Call Metropolis(Sc, T, M, It, pd)
Time = Time + M
T=a*T
M={3*M

until (Time? M axtime)
Output best solution

End

Figure 8: Simulated annealing algorithm

Simulated annealing procedure shown in Figure 8 starts with an initial solution So. an initial tempera-
ture To. cooling rate a. a constant {J which controls the time spent in annealing at a particular temperature,
M axtime that is the total time allowed for the annealing process, and M that represents the time until

the next parameter is updated.

Procedure Metropolis(Scur, T, M, It, pd)
/* Sour is the current state * /
/* T is the initial temperature * /
/* It is the latency constraint * /
/* pd is the PS_delay constraint * /

For i = 1 to M Do
Snew = Neighbor(Scur,i) \

Pipeline(Snew) /* pipeline the DFG * /

Gain = Cost(Scur) -Cost(Snew)
If (Gain> RandintO < e-6c/T)Then

If «LATENCY..TEST(Snew) = TRUE) &&
(PS_DELAY _TEST(Snew) = TRUE» Then

Scur= Snew
Endlf

Endlf
Endfor
Return Sour
End

Figure 9: The Metropolis procedure.

The core of the simulated annealing algorithm is the Metropolis procedure. This procedure (shown in
Figure 9) simulates the annealing process at a given temperature T [30]. It is responsible for producin~
neighbor solutions and also defining the basis for accepting the new state. The acceptance of the new stat(
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depends on the parameters cr, {3, T, Maxtime, and M.

In this procedure the current state is disturbed to obtain a neighboring state. After obtaining a new
state the cost of the state is computed in the same way as was done for SE (Section 3). If the cost of the
new solution Sn is better than the cost of the current solution Sc, and if latency and PS_delay constraints
are met, then the new solution is accepted and Sc is set to Sn. If the new solution has a higher cost
in comparison to the original solution Sc; Metropolis will accept the new solution on a probabilistic
basis. This is to accept up-hill moves. At higher temperatures the probability of large up-hiU moves is
high and at lower temperatures the probability is small. To accept up-hill moves a random number is
generated. The random number generation is assumed to follow a uniform distribution. If this random
number is smaller than e-~cIT, where L\c is the difference in costs, (L\c = c(Sn) -c(Sc}}, and T is the
temperature, the up-hill solution is accepted. That is, the probability that an inferior solution is accepted
is P(random < e-~cIT}. At very high temperatures, (when T -+ 00 ), e-~cIT = 1, and hence the above
probability approaches 1. When T -+ 0, the probability e-~cIT falls to zero.

Metropolis is also provided with the value M, which is the amount of time for which annealing must be
applied at a temperature T. The procedure Simulated_annealing simply invokes Metropolis at decreasing
temperatures. Temperature is initialized to a value To at the beginning of the procedure, and is slowly
reduced in a geometric progression; the parameter cr is used to achieve cooling. The amount of time spent
in annealing at a temperature maybe gradually increased as temperature is lowered [27]. This is done
using the parameter {3 ? 1. The variable Time keeps track of the time being expended in each call to the
Metropolis. The annealing procedure halts when Time exceeds the allowed time.

In SA, in each iteration only valid solutions are accepted as neighboring solutions, and the cost is
calculated only if the current state produced is a valid state. The set of parameters To, cr, {3 and i\f
specify the cooling schedule:- The method proposed in [28] was used to determine the best values of these
parameters. The initial temperature was chosen such that most of the initial transitions to new states are
accepted independel)t of their goodness. That is, the initial acceptance ratio X(To} is kept close to unity,
where X(To} is given by:

( '7' ) N umber of moves accepted at To
X.LO = (3)

Total number of moves attempted at To

To determine a good value of To, initially a very low value is chosen. The acceptance ratio is then calculated
by running the algorithm for a fixed number of iterations. At low values of To it was found that X{To) was
less than 0.5. Then To was increased in small multiples, and this procedure was repeated until the X{To)
was close to unity in the range between 0.9 and 1.0. The choice of (X should be such that temperature
To should be reduced at a uniform rate. Furthermore To should not approach zero quickly. Therefore the
temperature is reduced in geometric progression as shown in Equation 4.

Tk+l = a x Tkl \ k = 0,1, , (4)

In our problem best results were obtained for a = 0.98. M, the number of times the Metropolis loop is
executed at a given temperature was chosen to be equal to the number of vertices in the DFG.

Table 2: Characteristic of input graphs.

Experimental Results

SE algorithm was tested on different DFGs with varying complexities. The DFGs differed in the number
of nodes, types of operators and the complexity of the interconnections between the nodes. The depth

850



of the DFGs varied from 4 to 15. The characteristics of the DFGs are shown in Table 2. A total of s~
different graphs were used for experimentation. Due to the non-deterministic nature of the algorithm, th
procedure was run on the DFGs a number of times, and the best and average results tabulated. Latenc:
and PS_delay for each of the DFGs were different as shown in the Table 3. The DFGs are labeled EW:
(Elliptical wave filter) and Graph 1 through 5.

Cost (
Ave:.

Time
in secondsDFG R Iterations

27
55

118
129

94
185

328
234

342

346
622
892

119

175

398

328

136

308
447

831

148

287

475

515

Latency PS_delaybest I

~TOOl
21100 I
21100,
21100

136013
I

35641
34749
34958
69360
67896
67889
67742
37847
37101
36689
37447
58912
57158
55247
54259
39147
39901
38440
38926

231751
22277 i

21938 I

21278

36592
36544
35301
33505

7
19
27
29
223
431
753
621
223
815

1462
2060
161
234
533
434
591

1173
1719
3183
318
627

1071
1112

EWF 86 37

Graph 1 247 63

72667
68362
68063
67883

Graph 2 203 63

39016
38360
37209
37753

G~aph 3 187 63

59589
57266
55841
55123

Graph 4 307 63

40235
40492
39647
39228

Graph 5 286 63

Table 3: Stochastic Evolution results (with no intensification)

Table 4: Stochastic Evolution and Simulated Annealing results.

SA was also run on the same DFGs. Table 4 shows the results of SA and SE, both the average c(
and best cost are tabulated, where the cost is indicated in terms of the number of gates. Improvement
SA over SE is shown as % reduction. A bar chart depicting the improvement is given in Figure 10. It
seen that in four of the six DFG's SE performs better than SA.

The variation in costs for SA is initially large and then it gradually decreases and remains consta
after a certain period of time. This is because the cooling schedule in SA decreases gradually hence

851



I

Figure 10: Barchart showing the results of SE and SA.

accepts solutions with higher costs initially and then progressively accepts solutions \vith less variations in
costs. Then a point is reached when it accepts only good solutions, i.e., it accepts solutions \\.hose cost is
lesser than the current solution. In case of SE there is an initial drop in the cost in the first fe\\. iterations
then the cost varies within a range. This is depicted in Figures 11 and 12.

-u;
0
u

Figure 11: Plot showing the variation of cost for SA and SE during the initial stages.

DISCUSSION AND CONCLUSION5

Different iterative/constructive techniques may be used to obtain a cost-optimal solution for the CS&P
problem. A cost-optimal solution for this problem is obtained by minimizing the area occupied in terms
of the number of gates without violating the constraints, and also pipelining the DFG.

Stochastic evolution is a promising optimization technique. In this paper we described a heuristic
based on stochastic evolution (S£) for component selection and pipelining (CS&P). We posed CS&P as a
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Figure 12: Plot of DFG Graph 4 showing the variation of cost versus time using SA and SE technique

combinatorial optimization problem, and compared the performance of SE and simulated annealing (5
on a set of randomly generated DFGs. A realistic component library with multiple implementatioru
operators was used for component selection. Pipelining was done based on the constraints of latency (
pipestage delay that are specified. For pipelining, the DFG is scanned from the inputs towards the out~
When the sum of all the delays in the path exceeds the specified PS_delay constraint then a registe
placed. This is done for all the branches until the entire DFG satisfies the PS_delay constraint.

The Perturb function of SE is invoked to make a compound move from a current state S. Peri
scans the set of movable elements M according to some apriori ordering and moves every m E M to a J
location I E L. For our CS&;P problem, various ordering strategies have been experimented with. OrdeJ
of nodes based on their level in the DFG, random ordering, etc., were used to disturb the component
the DFG in order to determine if it affected the solution. It was observed that the ordering (of node
DFG) did not affect the quality of solution. This is because, irrespective of the ordering, the selectio:
the components from the component library is done randomly.

We believe that SE algorithm always run much faster than other stochastic iterative algorithms s
as simulated annealing. The reason is that, for SE, the parameter p, which controls how steep of a
the algorithm can climb, may be relatively large only:when there isa strong evidence of the search get1
stuck at a local minimum. Otherwise p is such that only small up-hill moves are allowed. SE does
have a hot regime like simulated annealing where the algorithm will be performing almost a random w
thus wasting runtime resources. Although we ran both the algorithms for the same time, comparably g
results were obtained using SE after only a few iterations.

In SE, after scanning all the movable elements m EM, the Make..5tate routine makes sure t
the final state satisfies the state constraints. If the state constraints are not satisfied then Make-St
reverses the fewest number of latest moves until the state constraints are satisfied. This procedur
required when perturbation moves that violate the state constraints are accepted. In our implementat
we store the last valid state, thereby avoiding backtracking by undoing some last moves.

The iteration bound R (reward) acts as the expected number of iterations the SE algorithm fiE
until Ccur < Cost(Sbest), i.e., an improvement in cost takes place. If such an improvement occurl
q < R iterations, then the remaining R -q iterations are added to the next R iterations to be perforn

---
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Consequently the quality of the final state obtained increases with the running time of the SE algorithm.
It was found that the algorithm ran for few hundred iterations and the results obtained were poor. On
increasing the the value of R the results improved and the algorithm ran for larger number of iterations.
It was found that best results in reasonable time were obtained when the value of R was between 20 and
25. In general if the value of R is increased then the chances of obtaining better results also improve. If R
is set to be too large, then SE algorithm wastes time during the last set of iterations because it cannot find
better states. However if R is chosen too small, the SE algorithm might not have enough time to improve
the initial state. To obtain cost-effective results, methods to determine an optimal value of R must be

investigated.
The update function in the SE algorithm determines the range of negative gains to be accepted.

Different methods could be formulated to determine this range to improve the results. A scheme for
selecting the parameters of the update function has been experimented with to obtain cost-effective results.

Simulated annealing is another promising optimization technique. For the purpose of comparison we
applied it .to the CS&P problem. Experimental results on different types of DFGs are reported and
comp.ared with S~. The representation of the problem and the perturb strategies used in SA were the
same 'as those for SE.
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