
Automatic Program Generation Using Sequent Calculus

Talal Maghrabi
Department of Computer Science and Engineering

Arizona State University
Tempe, Arizona 85287-5406

Abstract

Program development can be made amenable to formal
methods by using a logical framework. A logic
specification, whose operational semantics is based on
prcmf theory, provides an abstract and “implementation
independent” definition of the problem, the data domains
and the associated opmators.

Unlike many of the current efforts in this am that use
resolution, our approach is based on natural deduction,
more specifically, sequent calculus. Following the
methodology proposed by Marina and Wafdinger, we
propose the synthesis tableau technique by which we
construct a proof for the well formed formula representing
the specification. The desired program is obtained as a side
effect of the proof process.

1. Introduction

Automatic Program Synthesis (or APS), also known as
automatic programming, is the process of using computers
to systematically generate programs, or parts of programs,
from given specifications. Research in program synthesis
began around the period of developing the early compilers.
It was motivated by the need to simplify programming. As
it evolved, the motivation was shifted to the generation of
compuLerprograms in more reliable ways.

One of the interesting approaches to program synthesis
is based on theorem proving. Informally speaking,
automated theorem proving is the process of using a
computer to prove, or help in proving, theorems. In this
approach the specifications of the desired program is given
as a well-formed formula (wff) in Fmt Order Logic (FOL).
A theorem prover will prove the existence of such a
program by showing that this wff is a theorem. The
program may be generated as a side-effect of this process.

Permission to copy without fee all or part of this matarird is
granted provided that the copies are not mada or diatributad for
direct commercial advantaga, tha ACM cop~ight notice and tha
titte of tha publication and ita data appaar, and notica ia given
that cop~rtg is by parmiasion of the Association for Computing
MachineW. To copy otherwisa, or to republish, requires a faa
and/or specific permission.

Q 1992ACM 089791 -472-4/92/0002/0073 $1.50

Forouzan Golshani
Bull Worldwide Information Systems

Phoenix, Arizona 850S0
(on sabbatical leave from ASU)

There are now a number of prototype systems that
implement this approach. Typically, they use various
versions of resolution ~os84] as their deduction
mechanism. T%e main drawback of resolution theorem
proving is that the proofs generated are not constructive,
i.e. a wff can be shown to be a theorem but no constructive
pmtf is ~ided.

On the other hand,several interactive theorem provers
baaed on natural deduction have been developed. Natural
&duction, and hence sequent calculus, produces proofs in a
constructive manner. The proofs are constructed in a way
that is close to human “natural” reasoning. These proofs
can be easily followed, and modifhxl if necessary. When a
natural deduction based interactive theorem prover fails to
prove a given wff, the user can check the prcmf and modify
it or redirect the prover when needed. This interaction
between the user and the prover is very essential when
dealing with missing information, which is commonly
found with programs specif~ations.

Research in this field is important since using
machines to generate programs from specifications may
have the impact, at least in the long run, of reducing the
cost and time of the software life cycle. Moreover, using
automatic theorem provers to generate programs will
m- th~ h generated SOftWWWill fultll the original
specification since it was generated based on a sound
mathematical proof [Gren69, Mann80,Wald69].

This paper describes an attempt toward developing a
methodology, called the synthesis tableau, for gencra(ing
programs from natural deduction proofs. The motivation
behind using natural, rather than classical, deduction is that
natural deduction proofs are conducted in a more intuitive
way. In the cases of failure, the user can check the process
and modify or mdimct fhe prover as needed

The paper concentrates on two aspects of our research
on automated synthesis of prograrm (1) defining the target
language in which the &sired programs will be.constructed;
and (2) developing a method that maps the steps of a
constructed proof to the corresponding statements in the
target language. Tle target language is a primitive Prolog-
liie language in which programs are represented by a SCIof
statements. Each statement is defined on a set of variables
which are either input or output. The synthesis method
utilizes a tableau, called the synthesis tableau, similar to
the tableau of Manna and Waldinger t?vlarm80,Martn85].

In section 2, we describe automatic program synthesis.
Section 3 outlines the proposed method. Section 4 contains
an example that demonstrates the method.

73

2. Automatic Program Synthesis -
An Overview

Rapid developments in the field of computer programming
resulted in much interest in Autonuxic Programming (AP)
or automatic program synthesis. AP simply states that
computers can be instructed to generate programs for
performing certain tasks in an executable language fi’om
some given specification ~arr82, Bier761.

In the early investigations, the major motivation for
AP was to simplify programming and relieve programmers
from handling so many details. In fac~ compilers were
originally developed as automatic programming systems.
Nowadays the major goal of AP is a different one. It may
be a long time, if ever, before large programs can be
generated automatically, but the current goal of AP is to
develop programs using more reliable methodologies.
Current software development methods are costly and
genemlly unreliable. Much of the &livete.d software fails to
satisfy its specifkation [Schu90],

Several frameworks for automatic program synthesis
exist, including theorem proving and program-
transfonnation [Barr82]. lle theorem proving appr-h is
described in the next section. In the pogram-bansformation
approach, the original specification S is transformed
through several steps until it evolves into a set of
statements in some executable language. Typically,
specifications are written in a more powerful logic
(possibly, higher order logics), and the steps of
transformation reduce the formulae into statements in a less
powerful logic that is more suitable for computation. This
is motivated by the fact that higher order Iogics have more
expressive power but are less suited for computational
purposes. On the other hand, lower level Iogics, such as
Horn Clause logic, are computationally efficient but are
less expressive [G01s88]. The following diagram illustrates
this spectrum:

Horn Clause Logic FOL Higher order logic
<-----------—-----—--—-—-- >.—
More efficiently executable Mom expressive

Dijkstra developed an elegant and interesting
methodology for generation of programs and theii proof of
correctness [Cohn90, Dijk76]. In his approach, programs
are constructed using a set of preconditions and post-
conditions that must be satisfied by the program. Suppose a
program S must start at an initial state satisfying the input
condition Q and must terminate in a final state satisfying
the output condition R. Using Hoare’s notation [Gold82],
this program is represented as {Q] S{R]. The target
language of Dijkstra is a simple language with several
constructs such as sel@ion, repetition, and assignment.
Preconditions and post-conditions are defined precisely for
each construct. Both Q and R are used to generate program
S as a set of constructs in the target language.

2.1 Program Synthesis Using Theorem
Proving

The idea of using computers to gemmte programs directly
lhm the specification using mathematical methods is one
of the moat interesting and promising ideas in the field of
computer science. Programming, as viewed by some
mathematicians, can be considered as a mathematical
activity in which programs am considered as complex
mathematical expressions. This means that a program can
be&rived directly from its apecifhtion @3mm89].

The syntheaia of programs using theorem proving is a
process that consists of two major parux a proof and a
progrum. The proof is the sequence of steps followed to
show tha4 based on the available axioms and facts of some
theory, the given wff (specification) is a theorem in that
theory. ‘he program is a sequence of statements, in some
target language, that when executed with the given input
produces the correct output that meets the given
spedication.

‘l%especification of a program allows us to express the
P-of the program without showing how this purpose
can be achieved. To use theorem proving in synthesizing
Pro~ss Specifitions of programsneedto be stated in a
way suitable for theorem provers. Generally, a specification
of a program can be described as follows ~ann80]:

Prog(x) = fmd y such that O(x,y) where](X)
Here, x denotes the input to the desired program; y denotes
its output I(x) represents the input condition; and O(x,y)
represents the output conditions to be satisfied by Prog(x).
In other words, we are attempting to construct a program,
Prog, such that for an arbitrary input x satisfying the input
condition I(x) the output Prog(x) satisfies the output
condition qxprog(x)).
For example, to specify a program that computes the
integer square root of a non-negative integer n, we would
write Mn80]:

@n) e fmd y such that
integer(y) and y2 S n c (y+l)2 where
integer(n) and OS n.

In using theorem proving to derive a program from
such a specification, we are actually attempting to prove a
theorem of the form:

Vx (1(x)+ 3y qx,y))
This well-formed formula (wft) is read as follows: for all
input x, if x satisfies the condition I(x), then there exists an
output y such that the condition O(x,y) is satisfied.
The specification of the integer square root program using
FOL would be:

Vn (integer(n) A 0SS + 3y integer(y) A /< n c(y+l)2)

The existence of such a program can be shown by
proving that the above wff is a theorem of a formal system,
in this case FOL. llte desired program will be genezated as
a side effect of this process. PROW wald69] and QA3
[Gren691 are examples of this approach. These systems
were based on resolution theorem proving. The major
disadvantage of resolution-based theorem provers is that

74

when they fail to prove a given wff, generatly, the user
cannot interfere in the proving process. Even when the
prover is interxtive, the proof generated is not constructive,
and thus is difficult to follow and/or modify.

As mentioned before, several other theorem provers are
based on natural deduction [Bled83, Patd871 whose proofs
can be followed by the user, and hence can be corrected or
modified when needed. Although some researchers have
attempted to generate programs by using a theorem prover
basal on natural deduction [Goto78, Goto79, Sato79], these
attempts have been limited to the domain of natural
numbers only, and have not been shown to be effective in
other domains.

2.2 Natural Deduction Theorem Proving

Natural akdudon is a deduction mechanism that can be used
with the languages of propositional or fnt-order predicate
calculi to derive wffs in a seemingly naturalway. This
mechanism was originally formalized by Gentzen [Szab69].
The original motivation was to set up an intuitive formal
system. Later, Gentzen formulated sequent calculus in
which theorems are proved using natural deduction, and in
which proofs are independent of assumptions.

In natural deduction, each logical connective or
quantifier is defined by two rules: introduction and
elimination. The introduction rule of a connective, say v,
determines when q v ~ can be concluded. On the other
hand, the elimination rule determines what can be concluded
from x v B ~au187]. Note that A and 2?are syntactic meta
symbols that can be used to represent any wff. A proof in
natural deduction may be seen as a collection of formulas
arranged in a tree form in which the theorem is at the root,
arcs are labeled with inferenw rules, and leaves are axioms
andior assumptions.

In sequent calculus each wff has its own truth without
being based on any assumptions. The building blwk of
sequent calculus is sequent. A sequent has the form:

xl, ... ,ql-%

where (Al ,...~) is calld the antece&nf and tSis called the
consequence. This sequent states that the wff z is provable
from the set of assumptions Xl ,...,~. Informally, the

sequent Al,..., ~ 1-3 means that 9 is true whenever each

and every ~ is true.

In sequent calculus, inference rules are defined
differently than in natural deduction. Each connective or
quantifier is defined by two rules depending on its position
with respect to 1–. A left rule of a connective (or a
quantifier) determines what should be concluded when that
connective is on the left of J–, while the right rule
determines what should be concluded when the camective is
on the right of 1–. The left rules are similar to the
elimination rules, and the right rules are similar to the
introduction rules of natural deduction. For a complete and
comprehensive discussion of sequent calculus the reader
may refer to rau187, Szab69]. A few of the inference rules
of sequent calculus are shown in Figure 1. In these rules,
r and A represent sets of wffs; the r, A represents the

union of r and (A); and ath] means that each occumence
of the variable x in fi is replaced by the term t. The rule
rl–fi
— is read bottom-up as follows given the sequent A
Al-%

3. The Synthesis Methodology

In this research two major components are needed: a
turget kzngurzgein which programs will be constructed, and
a comrtruction method in which both proofs and programs
are generated. Our target language, catled Ls, is a simple

Prolog-like language in which programs are constructed
using pedieates and functions. The construction method we
have developed here, called the synthesis tableau, is similar
to the method of Manna and Waldinger since both of them
uses a tableau to represent the proof and the program
construction. This method is, however, different from theirs
in the proving methodology. While Manna and Waldinger
used some versions of resolution to conduct the proof, we
rely completely on sequent c.dculus.

This section frost presents an informal description of
our method. Essentially, a program is synthesized by
constructing a proof in sequent calculus for the wff
representing the given specification along with developing
statements in the target language that represent the desired
program. The completion of the proof signifies the end of
program construction.

3.1 The Target Language

The target language L5 is a small subset of the language of

Horn clauses. The motivation behind choosing such a
simple language is that we needed a language that
demonstrates our construction method without the burden of
using the various constructs of a complex language.

A program consists of one or more statements (Hem
ctauses). Each statement, in the program, consists of one or
more predicates. The “:- “ is used to represent conditional
statements, i.e. pl(tl) :- p2(t1,~) means that the l-place
predicate pl(tl) is true if the 2-place predcatc p2(t1 ,~) is

true. The “,“ is used to represent conjunction of predicates
in conditional statements, i.e. pl (tl) :- Pz(tl ,t2) , P3(tq)

means that pl(tl) is true if both p2(t1 ,~) and P3(~) me

true.
Suppose x~,X2,X3 are non-negative integers, and

suppose pl(xl ,x2,x3) Stids for “x3 is the quotient of
dividing xl by X2”, and P2(x1,x2) stands for “X1 is lCSS

than X2”. Then the expression “if xl c X2 then x ~/x2= O“

is represented by the following statement in Ls:

Pl(xl *X2*O):- P2(X 1,X2)

75

———

Right

v: rl-a
r F vx. g

(x is notf?ee in r)

3:
r F 41t/x]
r 1- 3X.X

I&0

r,~l-m
r, 3X.X 1-9

(x is nolfree in rOr @

Figure 1: Sequent Calculus InfemmceRules

Proof I
(i) X~!B I Pj

(i) is used to number the prmf step, fl n3presents the assumptions of the proof step, fErepresents

the conclusion of the proof step, and 5 rqresemts some statement(s) in the target language.

Figure 2: A Typical Row in The Synthesis Tableau

Proof
(1) ➤Vx I(x) + 3y O(x, y) P, (x*y)

Figure 3: The Initial Tableau

3.2 The Basic Structure

The basic structure of our method is a tableau called the
synthesis raldeau. This tableau, which is similar to (but
different from) the tableau of Manna and Waldinger
[Mann80], consists of two columns called proof and
program. Each row contains the proof step in the proof
column and the segment of the program generated by that
step of the proof in the program column. Obviously, the
entries to the program column have no effect on the proof
process. A typical row in the tableau is shown in Figure 2.
Note that the program entry may be empty.

Proofs are conducted using sequent calculus with
backward chaining. We start with the given wff, and use the
left or right inference rules of connective (or quantifiers)
to reduce the given sequent into one or more new sequents.
These new sequents maybe reduced fwther. This process is
repeated until we end up only with axioms. For example, in

order to prove the sequent r E Vx X it is sufficient to
reduce it into the sequent r ~ g and then prove this new
sequem

In our early attempts, as described in [Magh91], the
proofs were conducted using sequent calculus with forward
chaining, i.e. we started with the axioms and used the
inference rules to derive the given wff. We, ah, used
9eparate columns to rqmxwnt the assumptions (antecedents)
and the conclusion (consequen@ of the sequemt. However,
it became clear that the separation of these columns was not
necessary, and the proof step could be represented as a
single column. It also became clear that forwrud proofs were
not appropriate. t%signing the initial predicate to an axiom
was incornxt since it violated our b@c mle which states
thateach program entry must satisfy the corresponding
proof step. Therefore, the initial predicate should only be
assigned to the original wff (i.e. the spedkation).

76

Suppose we are given the original wff(speeifieatkm) as
Vx I(x) + 3y qx, y), and suppose we choose Pl(x,y) to

be the initial (or main) pmdieate of the target program. then
the initiat tableau will be as shown in F- 3.

3.3 Program Construction

Given a wff representing the speeifieation, the desired
program may be genemted as follcmw
1) -

2)

3)

4)

A suitable inititd predieate is assigned to the program
entry of the fmt row in the tableau. By suitable we
mean that the predieate has the appropriate input and
output variables. The initial tableau will be sirniIar to
the one shown above.
The proof is done by backward chaining as stated
earlier.
During the derivation of the proof, the program emtries
in rhe tableau are refined in the fdbving manner
* The creation of a new proof step (Subgodj may

result in a creation of a new suitable ptedieate.
* All substitutions of variables made in the proof

pmeess are atso applied to the program entry.
* The program entry of a new sub-goal is derived

from the program entry of its original goat using
the rules which witl be deseribed in section 3.4.

The process terminates upon completion of proofs of
all sub-wffs. The desir&i progr~ will then be the
collection of the program entries of each sub-goal.

The above procedure is entirely different from that of
Manna and Waldinger. First, in their method they sepated
the assumptions and conclusion of the sequent into two
columns: goals and assertions, and no row in the tableau
can have both a goat and an assertion. Second, they applied
some versions of resolution between goals and/or
assertions, thus they do not use natural deduction. Finally,
their process terminates when a false assertion (or a true
goal) is reached.

3.4 Inference Rules and Program Entries

Since each new step in a proof is generated by applying an
inference rule, we need to define how the application of
such inference rules affects the associated program entries.
We should note, however, that while the proof of the sub-
goal(s) suffices as a proof of the original goal, the program
associated with the original goal depends on the program(s)
associated with the sub-goal(s). Thus all program entries
should be kept during the construction process. Below we
will present some of the inference rules. A complete list
can he found in [Magh92].

t Inf~
r l-x

‘he ‘-right ‘nference‘le’s r I–VX 9-
A backward

reading of this rule states that in order to prove the sequent
r 1- Vx A, it is sufficient to prove the sequent r 1- X
provided that x is not free in r.

Assume that during our construction process we
obtained the row shown in Ftgure 4.iL where P. is a

statement in LS. By the atmve inference rule w: can

conclude that since the proof of the sequent r I-Alads toa
proof of the sequent r EVX X then the ~uent r I-VX X

ean be r@mxxl by the sequent r I-A to generate the a new
entry in the proof eohmut.

In the program eolumrt, since the only change made to
the proof entry is removing the quantifier, which does not
change the original specification, the new row in the
tableau should have the same program entry, i.e. the new
row in the tableau should be as shown in Figure 4.b.

The 3-right inferenee rule is ~ ~xti~] . This rule states

mat proving the sequent r 1–A[t/x] is sufficient for the
proof of the sequent r ~ 3x ~ Using the same reasoning
as in the first rule, we find out that the row shown in
Figure 5.a can be replaced by the row shown in Figure 5.b.
Note that Pj[tix] is obtained from Pj by replacing each

occurrence of the variable x by the term t.

●

The +-right inference rule is
r, q- 9
r l-q+ 9- This rule states

that in order to prove the sequent r 1–X+ B we need a
proof of the sequent r, x 1- ZI.If we obtain the row shown
in Figure 6a. then we can replaee it with the row shown in
Figure 6.b.

The v-left inference rule is
r,fl F c r,m I- c The

r, fiVZI I– c .

rule states that the proof of the sequent r, JWB1-Ccan be
achieved by proving both of the sequents r, x 1– C and
r, S 1– C. This rule is different from the previous rules
since it reduces the original goat to two subgoals. Suppose,
during the synthesis of a program, we generate the row
shown in Figure 7a, then, we need to indicate that ~j

depends on both the programs generated by the new rows,
~y P.l and ~j2, based on A or ~ respectively.

1So i the proof of the new subgoals generate the rows
shown in Figure 7.b, we will have to rewrite the program
entry in step (i) as :

‘j ‘-pil *Pjl

‘j’- ‘i2’ ‘j2
where pi 1 and Ti2 are the representation of A and Z?
respectively, in the target language.

4. An Example

Assume that we want to generate a program that computes
the integer quotient and mnainder of dividing two integers.
‘he problem can be specified as follows:

77

l(i)r~Vx5i I Pi I
Figure 4.a: A row with r 1- Vx A in the proof column.

F’igum4.b: The above row after the applicatkm of V-right rule.

F@re 5.a: A mw with r F 3X a in the proof column.

Figure 5.b: ‘I%eabove row after the application of 3-right rule.

Figure 6.a: A row with r K 99 in the proof column.

Figure 6.b: The above row after the application of +-right rule.

l(i)r,wn~c I Pi
1

Figure 7.a: A row with r, $4@ ~ Cin the proof column.

I(i+2)r,91- c I ~iz I

Figure7.b: The new rows associated with the new proof steps.

78

~XlX2 (xl~ A xz~ + 3Y1Y2 x2>Y2 A Y2~ A
xl =X2* Y1+Y2) (s)

Here, we use the proof strategy in [Cons78]. We start
by choosing the predicate p1(X1X~yl,Y2) = the MM (Or

main) predicate, and stores it in the program column of the
first row in the tableau. The proof column has the initial
specification (as a sequent). Thus, the initial tableau is
shown in Figure 8A.

By applying the rules presented in the pmvioua section,
we reduce the original sequent to a new one obtaining the
the row shown in Figure 8.b. From number theory, we
know that the expression %220 A x2>0 UI b IWhlCd by

the expression xl <x2 v X12X2. This transformation will

not change the program entry. Thus we obtain the row
shown in Figure 8.c.

Using the v-left infexemcerule of the previous section,
and if p2(x1 X2) denotes the relation xl arz, and P3(x1 x2)

denotes the relation xl 2x2 (in the target hUt@ttge), we

generate the row shown in Figure 8.d.
Now we have two subgoals whose antecedents are

X1CX2and X12X2, respectively. The first subgoal X1<X2

1-x2>Y2Ay22 OA xl=x2*yl+x2 (whose program en-

has the predicate p4(x ~,x2,y1 ,y2)) is proved as shown in
Figure 8.e.

Since x ~<x2, we conclude that for Xl=X2*yl+y2 to k

true we must assign the value O for yl and the value xl for

y2. Let the constant symbol al of the target language

denotes O,we obtain the row shown in Figure 8.f.
The second subgoal X12X2 1- X2>y2 A y2 20 A

x1=x2* Y1+X2 (whose program entry has the predicate

P5(x 1,X2,Y1,Y2)) is prov~ M shown in fig~ 8.g.

The proof here is done by complete induction on xl.

k q(xl ,X2) represents the quotient of xl/x2 and tixl ,X2)

_nw m mtir of xlh2. The concept of complete
induction states that in ordex to prove
xl=2 A x2~ + x2>Y2 A Y2~ A xl = x2 ● q(xl*x2) +

tixlJJ
we assume the induction hypothesis, which states the atmve
tiholdsfaall x’thatare leas than xl. i.e.

X’<xl + (x2x2 A X@ + X2>Y2 A)’2 ~ A

x’= X2* q(x’xz) + r(x’xz))

Now, by setting x’ to x~- x2 in the induction

hypothesis, the induction proof introduces a recursive call
to the remainderquotient program with x ~ replaced by

x1-x2 ‘tlis is shown in Figure 8.h.

Using arithmetic manipulation and renaming the
variables q(xl -X2,X2) and I’(x1-x2,x2) to Y1 Wd Y2,

respectively, and if ~z(yl ,1) denotes the expression yz + 1

then we obtain the final row as shown in Figure 8.i.
By proving the subgoals in (5) and (7), we have proven

the original goal in (4), and hence we have proven the
original wff in (S). Therefore, the desired program that
satisfies the given specification for the quotient and
remaindex of non-negative integers ix

P1(X1X2*Y1.Y2):- P2(X1*X2)?P4(xl?@Yl *Y2)

PI(xlX2.Yl .Y2) :- P3(xl,x2), P5(xl.x2.Yl.Y2)

P4(xl~2AlAl)

P5(x13~fl(Yl .1)*Y2):- P1(X1-X2.X2.Y1)Y2)

Proof Rogram
(1) ~ VXIXZ(X~~ A X@ + 3y~y2 X2>y2 A y220 A P1(X1J2*Y1.Y2).

xl = X2* Y1+Y2)& i

Figure 8.a: The Initiat tableau for the example

(2) X1~ A X2~ ~ X2>y2 A yz ~ OA Xl=X2Xyl+y2 I p*(x1A2,y~,yJ.
I

Figure 8.b: ‘he tableau after applying some inference rules

F@tue 8.c: The tableau after applying some transformation rules

(4) xlcx~ v X12X2 1-x2>y2Ay22 O A xl=x2*Y~+Y2 P1(X1*X2*Y19Y2) :- PJX1A2)*

P4(X1 .X2*Y1 .Y2).

Pl(xlJ~Y11Y2) :- P3(X1J2)

P5(q 32.Y1 *Y2).

Figure 8.d: ‘flte tableau after applying the v-left inference rule

79

(5) X1-Z F XZ>Y2 A YZ ~ OAXl=X2*y)+y2 IP4(XlX2$YlSY2). I

Figure 8.e The row genemed fa proving the f- subgoal.

(6) X1<X2➤X~y2 A y~ ~ OA X~=X2~y~+y2 I P4(xIA2~IXI) 1

Figure 8.f The row that shows the proof of the fti sub-god.

Figure 8.g The row genemted for proving the second sub-goal.

(8) X1-X*2X2 AX@ + XZ>YZ A yz 2t) A P5(q.@Yl$Y2) :-

X1-X2 = X2 * q(x] -X2J2) + dx 1-X2J2) P1(X1-X2J3Y1$Y2)

Figure 8.h The row generated by the induction hypothesis

(9) x~zxz t- XZ>YZ A yz >0 A x~=xz8y~+xz P5(q$qqYl*U.Y2) :-

Pl(xl-q7x>Yl.Y2)

F@UIV 8.i The row that shows the proof of the second sub-goal.

This example demonstrates how a program can be
constructed as a skkffect of a natund deduction proof.More
examples, particularly those involving other rules of
inference, are presented in lMagh92].

5. Conclusion

Modem software engineaing techniques aim at developing
programs that are shorter, clearer and, above all, correct,
The well-recognized “software crisis” is a symptom of the
limitations inherent in the traditional approach to the
specification, design and programming of complex systems.

Although programming languages have not changed a
great deal in the past decade, programming methoddogies
have seen considerable changes. Investigations into program
correctness have led to the discovery of several novel and
interesting methods for program development. In this
research, we have pursued the idea that programs and their
proof of cormdness may be genexatcd hand-in-hand within a
rigorous formal framework. Several techniques, such as
Dijkstra’s program proving framework, program
transformation techniques, and the tableau methods, are
developed based on this ideology.

We have chosen the tabkau method, and have
developed a framework for program derivation called the

synthesis tableau. Sequent calculus is used for construction
of proofs and derivation of programs. It is important to note
tha~ in this methodology, the proof ideas lead the way for
the generation of program. If applied carefully, the derived
~ will (povably) adhere to its specification, and will
be free of error. By using this rigorous framework, we will
have “correctness by construction” instead of costly
“postmortem” verifications which, in most cases, are not

References

l@m821 A. Barr and E. Feigenbaun (Eds), The Handbook
of Artificial [nte/ligence, Vcd. 2, Chapter X, William
Kaufmann Inc., pp. 297-325, 1982
@i@76] A. Biermann, “Approaches to Automatic
Programming,” in Advances in Computers, Vol. 15, pp.
1-63, Academic Press, 1976.
lBkd831 W. EUedaoC,“The UT Frover~ Math Department
Memo ATP-17B, University of Texas At Austin, April
1983.
[Cohn90] E. Cohen, Programming in the 1990s: An .
Introduction to The Calculation of Programs, Springer-
Verlag, 1990.

80

[Cons78] R. Constable and M. O’DonneII, A
Programming Logic with An Introduction to The PL/CV
Ver@er, Winthrop Publisher, Inc., 1978.
[Dijk76] E. Dijkstra, A Discipline of Programming,
Prentice-Hall, 1976.
[Drom89] G. Dromey, Program Derivation: The
Development of Programs from Specifications, Addison-
Wesley, 1989.
[Gold821 R. Goldblat4 “Axiomatizing The Logic Of
Computer Programming,” Lecture Notes in Computer
Science, Vol. 130, Springer-Verlag, 1982.
[GoIs88] F. Golshani, W. Scott and P. White,
“Languages for Intelligent !lpecif~on Systems,” Proc. of
IEEE International Co@erence on Computer Lunguages,
Miami Beach, FL, pp 304-311,1988.
[Goto78] S. Goto, “Rogram Synthesis through Godel’s
Interpretation,” Proc. of the Int. Conference on
Mathematical Studies of t~ormatwn Processing, pp. 302-
325, 1978.
[Goto79] S. Goto, “Program Synthesis from Natural
Deduction Proofs,” proc. of Int.Joint Conference on
Artificial Intelligence, pp. 339-341, 1979.
[Grcn69] C. Green, “Application of Theorem Proving to
Problem Solving,” proc. oflJCAf, pp. 219-239, 1%9.
[Magh91] T. Maghrabi, “Generating Programs from
Natural Deduction Proofs,” Proc. of The First Golden West
Conference on Intelligence Systems, Reno, Nevada, pp.
150-156, June 1991,

CMagh921 T. Maghrabi, “The Synthesis Tableau: An
Automatic Programming Approach Using Sequent
Cakulus,” Ph. D dissertation, Department of Computer
science and Engineering, Arizona State UNversity, 1992.
-I Z. Manna and R. Waldinger, “A Deductive
A-h to Program Synthesis,” ACM Transactions on
Programming Languages and Systems, (2), pp. 90-121,
1980.
lMtIut85] Z. Manna and R. WaMinger, The Logica/ Basis
fo~8%nputer Programming, Vol. 2, Addison-Wesley,

mh] L. Paulson, Logic and Computation: Inferac{ive
Proofs with Cambridge LCF, Cambridge University Press,
1987.
[Sato79] M. Sate, “Towards A Mathematical Theory of
Program Synthesis,” proc. of IntJoint Conference on
Art#7cial Intelligence, pp. 757-762,1979.
[Schu90] G. !$chulmeyer, Zero Dtfect Software, McGraw-
Hill, 1990.
[Szab69] M. Szabo (Ed.), The CollectedPapersof Gerhard
Gentzen, North-Holland Publishing Company, pp. 68-128,
1969.
Nal@] R. Waldinger and R. Lee, “PROW: A Step
Toward Automatic Program Writing,” proc. of IJCAI, pp.
%1-252, 1%9.
Nos84] L. Wos, R. Overbeek, E. Lusk and J. Boyle,
Automated Reasoning: Introduction and Applications,
Prentice-Hall, 1984.

81

82

