
	King Fahd university of petroleum & minerals
Information & Computer Science Department

ICS 591 Independent Study

	Software Protection

	Draft Paper

	Supervised by
Dr. Lahouari, Ghouti
Done by
Hamoud Al-Jamaan
ID#: 260296
17-March-2008

1. Introduction

With the rapid growth of applications development, software piracy became a major concern for software developers. Business software alliance organization (1) estimated that 35% of worldwide soft wares were pirated in 2004, which caused a loss of nearly $29 billion. Pirates use reverse engineering and de-compilation techniques to steal software. Software piracy involves stealing others algorithmic secrets, to decrease the effort spent on production time which allows them to gain an advantage in the market competition.
To help developers protect their software from piracy, or reclaim the ownership of their pirated software, software protection techniques were introduced. Software protection techniques can be classified as hardware-based or software-based approaches. In this paper, we are going to focus on software-based protection techniques, such as watermarking, code obfuscation and tamper proofing.

Unfortunately software protection didn’t receive that much attention in the research community and most of research in that field were directed towards java programs. Our main contribution in this paper is to survey existing software protection techniques and study their impact when we apply them to C# programs.
The rest of this paper is organized as follows: Section 2 provides a brief taxonomy of software protection techniques. Section 3 contains the literature review. Section 4 explains the empirical study. Section 5 presents and analyzes the result. Section 6 draws the conclusion and gives directions of future work.
2. Software Protection techniques

In this section, we will provide a brief taxonomy of software protection techniques to remove the ambiguity when we refer to them.
2.1. Software watermarking
Software watermarking is defined as a technique for hiding identified information inside code and makes it invisible and difficult to remove (2). Watermarking by itself doesn’t prevent piracy, but it helps to detect software piracy after the distribution of the software by reclaiming the ownership using the added mark (3).

Software watermarking can be classified as static or dynamic watermarks:

(1) Static watermarks

In static watermarks, watermarks are embedded directly in the program executable and become part of the behavior.
(2) Dynamic watermarks

In dynamic watermarks, watermarks are embedded in the dynamic state of the program, which can be traced during the program execution.

2.2. Code obfuscation
Code obfuscation is a technique for modifying the code to make it difficult to understand and debug, and therefore difficult to reverse engineer.
2.3. Software tamper-proofing
Tamper-proofing is a technique used to detect an alteration in the program and then causes the software to fail, if altered.
3. Literature Review

Most of the researches done in software protection techniques were focusing mainly on different software watermarking techniques. Other protection techniques, such as code obfuscation and tamper-proofing, were introduced in some researches as supporting techniques to help increase software protection.
Software watermarking taxonomies were introduced in the literature to remove the confusion raised in academic writing in software watermarking. J. Nagra et al. (2) (4) proposed a taxonomy that classifies software watermarks based on the purpose of the mark. They have identified four software watermarks based on their protective purposes, and they are: validation mark, licensing mark, authorship mark and fingerprinting mark. W. Zhu et al. (5) formalized fundamental concepts in software watermarking. They formally defined concepts involved in embedding and extracting watermarks from programs in software watermarking.

Software watermarks were classified in the literature as static or dynamic watermarks. Many static software watermarking algorithms were proposed in the literature. R. Davidson et al. (6) proposed the first static software watermarking algorithm. The basic idea of their algorithm is to embed the watermark by rearranging the blocks of a program executable. J. Stern et al. (7) introduced a new paradigm called vector extraction paradigm which makes transformation between digital data and an abstract vector representation of these data. As an application, they proposed a robust technique in order to insert watermarks in executable code. G. Arboit et al. (8) proposed an algorithm to embed watermarks by adding special opaque predicates to a program. Opaque predicates are logical expressions that have a constant value (9). This algorithm was implemented and empirically evaluated by G. Myles et al. (10). A. Monden et al. (11) proposed a practical method to embed java programs with digital watermarking. This method is practical, because watermarks can be easily decoded from stolen programs. In (3) A. Monden et al. made an experiment to evaluate their method, and the results showed that most of the watermarks survived two attacks to erase watermarks which are an obfuscator attack, and a decompile-recompile attack. G. Qu et al. (12) proposed a constraint-based watermarking and built the first theoretical framework for analyzing watermarking techniques. They selected two criteria as a basis for their analysis, which are high credibility and low overhead.
In the literature, advantages of static watermarks were obvious, they were easy to implement, and they didn’t affect the performance of the program. But, since the static watermarks are so simple, embedded watermarks were open for a wide arrange of attacks against it. To generate more strong watermarks, dynamic watermarks were introduced in the literature.
Many dynamic software watermarking algorithms were proposed in the literature. Collberg et al. (13) proposed the first dynamic watermarking algorithm, in which a dynamic graphic watermark is stored in the execution state of the program. This algorithm appears to be resistance to a large number of obfuscating transformations. Based on this proposed algorithm, J. Palsberg et al. (14) implemented a tool to watermark java programs using collberg ideas described in (13). Their experimental results show that dynamic watermarking is resistant to a variety of attacks, and the watermark it can be returned efficiently. They also stated that to provide more protection to watermarks, we should use other protection techniques, such as obfuscation and tamper-proofing, and integrate them in the watermarking system. C. Collberg et al. (15) produced a new approach to software watermarking, called path-based watermarking, that embeds the watermark in the dynamic structure of the program. Experiment results showed this technique is resistant to a wide variety of attacks and cost of embedding large watermarks is modest. J. Nagra et al. (16) introduced a new dynamic watermarking technique, which embeds watermarks using thread contention. They conducted an empirical study with java byte code to show that it has small impact on the size of applications and a modest effect on their speed.

Among dynamic watermarking techniques, two of them use graphs to embed the watermark, one done by C. Collberg et al. (13) and the other one done by R. Venkatesan et al. (17). R. Venkatesan et al. (17) approach works with program flow graphs and it uses a random walk method to embed the watermark with the goal to minimize the additions to be made for embedding. Their approach was implemented by C. Collberg et al. (18) within constraints of java byte code.

A new framework was introduced for software watermarking by P. Cousot et al. (19) called abstract software watermarking. Abstract software watermarking is fully automatic and different from both static and dynamic watermarking. The basic idea behind this concept is that the watermark hidden in the program code can only be extracted by an abstract interpretation of the concrete semantics of this code. This technique was illustrated using java classes in (19).
D. Curran et al. (20) defined a signal detection model of software watermarking, providing a framework for a watermark embedding and extraction. This signal detection theory is used in multimedia watermarking.
Coding obfuscation (9), and tamper-proofing (14) were introduced in the literature as supporting techniques to increase the software protection level. Most of researches done on these two techniques were based on java.
In summary, we have seen that many and different kinds of protection techniques were introduced in the literature, but they were limited to java programs. Also, many of these proposed techniques were not implemented yet.
4. Experimental Design
4.1. Goal
We are going to apply two watermarking techniques, one static and the other one is dynamic, on C# code, and we are going to evaluate the performance after applying these two techniques based on a set of evaluation measures.
4.2. Evaluation measures
5. Results analysis

[To be done in final paper]

6. Conclusion

[To be done in final paper]

7. Bibliography
1. Business Software Alliance. [Online] http://www.bsa.org.

2. A functional taxonomy for software watermarking. Jasvir Nagra, Clark Thomborson , Christian Collberg. s.l. : IEEE, 2002.

3. A Practical Method for Watermarking Java Programs. Akito Monden, Hajimu Iida , Ken-ichi Matsumoto , Koji Torii , Katsuro Inoue. s.l. : 24th International Computer Software and Applications Conference, 2000.

4. Software watermarking : Protective terminology. J. Nagra, C. Thomborson,and C. Collberg. s.l. : In Proceedings of the ACSC 2002, 2002.

5. Extraction in Software Watermarking. William Zhu, Clark Thomborson. s.l. : ACM, 2006.

6. Robert L. Davidson, Nathan Myhrvold. Method and system for generating and auditing a signature for a computer program. US Patent 5,559,884. Assignee: Microsoft Corporation 1996.

7. Robust Object Watermarking Application to code. Julien P. Stern, Gael Hachez, Francois Koeune, Jean-Jacques. s.l. : In Information Hiding, Springer-Verlag, 1999.

8. A Method for Watermarking Java Programs via Opaque Predicates. Arboit, Genevi`eve. s.l. : In The Fifth International Conference on Electronic Commerce Research (ICECR-5), 2002.

9. Manufacturing Cheap, Resilient, and Stealthy Opaque Constructs. C. Collberg, C. Thomborso, D. Low. s.l. : ACM, 1998.

10. Software watermarking via opaque predicates: Implementation, analysis, and attacks. Ginger Myles, Christian Collberg. s.l. : Kluwer Academic Publishers, 2006.

11. Watermarking java programs. Monden, A., Hajimu, I., Matsumoto, K., Katsuro, I., & Torii, K. s.l. : In Proceedings of International Symposium on Future Software Technology, 1999.

12. Hiding Signatures in Graph Coloring Solutions. Gang Qu, Miodrag Potkonjak. s.l. : Proceedings of the Third International Workshop on Information Hiding, Springer-Verlag, 1999.

13. Software Watermarking: Models and Dynamic Embeddings . Christian Collberg, Clark Thomborson. s.l. : ACM, 1999.

14. Experience with software watermarking. J. Palsberg, S. Krishnaswamy , Minseok Kwon , D. Ma , Qiuyun Shao , Y. Zhang. s.l. : IEEE, 2000.

15. Dynamic Path-Based Software Watermarking. C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, M. Stepp. s.l. : ACM, 2004.

16. Threading software watermarks. Nagra, J., & Thomborson, C. s.l. : In 6th International Information Hiding Workshop, 2004.

17. A Graph Theoretic Approach to Software Watermarking. Ramarathnam Venkatesan, Vijay V. Vazirani , Saurabh Sinha. s.l. : Proceedings of the 4th International Workshop on Information Hiding, Springer-Verlag , 2001.

18. Graph theoretic software watermarks: Implementation, analysis, and attacks. Christian Collberg, Andrew Huntwork, Edward Carter. s.l. : In 6th International Information Hiding Workshop, 2004.

19. An abstract interpretation-based framework for software watermarking. Patrick Cousot, Radhia Cousot. s.l. : ACM, 2004.

20. Securing Java through software watermarking. D. Curran, N. J. Hurley , M. Ó Cinnéide. s.l. : Proceedings of the 2nd international conference on Principles and practice of programming in Java, 2003.

21. Software Piracy Prevention through Diversity. Bertrand Anckaert, Bjorn De Sutter, Koen De Bosschere. s.l. : ACM, 2004.

22. Sandmark--A Tool for Software Protection Research. Christian Collberg, Ginger Myles, Andrew Huntwork. s.l. : IEEE Security and Privacy, 2003.

23. Sandmark. [Online] http://www.cs.arizona.edu/sandmark/.

24. A Comparative Study of Software Protection Tools Suited for E-Commerce with Contributions to Software Watermarking and Smart Cards. Hachez, G. s.l. : PhD thesis, Universite Catholique de Louvain, 2003.

25. Threading software watermarks. Jasvir Nagra, Clark Thomborson , Christian Collberg. s.l. : IEEE, 2002.

26. Sahoo, T. R., & Collberg, C. Software watermarking in the frequency domain: Implementation, analysis, and attacks. s.l. : Technical Report, IOS Press, 2004.

27. Benchmarking framework for software watermarking. Aldharrab, M. s.l. : Master's Thesis, KFUPM, 2005.

28. On the limits of software watermarking. C. Collberg, C. Thomborson, and D. Low. s.l. : Technical Report#164, Department of Computer Science, The University of Auckland, 1998.

29. Watermarking, tamper-proffing, and obfuscation: tools for software protection. C. Collberg, C. Thomborson. s.l. : IEEE, 2002.

30. Error-correcting graphs for software watermarking. C. Collberg, S. Kobourov, E. Carter, and C. Thomborson. 2003 : In 29th Workshop on Graph Theoretic Concepts in Computer Science.

31. Software Engineering for Security: a Roadmap. Stubblebine, T. Premkumar Devanbu and Stuart. s.l. : In Proceedings of the conference on The future of Software engineering, ACM Press, 2000.

32. An Assessment and Comparison of Common Software Cost Estimation Models. Briand, L.C. El Emam K., Maxwell, K., Surmann, D., Wieczorek, I. Los Angeles, U.S.A : s.n., 1998. Proceedings of the 21 st International Conference on Software Engineering. pp. 313-322.

33. An investigation of artificial neural networks based prediction systems in software project management. Tronto, Iris Fabiana de Barcelos, Tronto, Iris Fabiana de Barcelos and Tronto, Iris Fabiana de Barcelos. 2007, Journal of Systems and Software.

34. Machine Learning Approaches to Estimating Software Development Effort. Srinivasan, Krishnamoorthy and Fisher, Douglas. 2, Piscataway, NJ, USA : IEEE Press, 1995, IEEE Transactions on Software Engineering , Vol. 21, pp. 126 - 137.

35. Fuzzy Modeling of Software Effort Prediction. Ryder, J. s.l. : IEEE, 1998. Information Technology Conference. pp. 53 - 56.

36. A Probabilistic Model for Predicting Software Development Effort. Pendharkar, Parag C., Subramanian, Girish H. and Rodger, James A. 7, Piscataway, NJ, USA : IEEE Press, 2005, IEEE Transactions on Software Engineering , Vol. 31, pp. 615 - 624.

37. Software Development Effort Estimation Using Fuzzy Logic: A Case Study. Martin, C.L., et al. Mexico : IEEE, 2005. Computer Science. Vol. Mexico, pp. 113 - 120.

38. Kadoda, Gada, Cartwright, Michelle and Shepperd, Martin. On Configuring a Case-Based Reasoning Software Project Prediction System. 2000.

39. Experiences Using CaseBased Reasoning to Predict Software Project Effort. Kadoda, Gada, et al. Keele University, Staffordshire, UK : s.n., 2000. 4th Intl. Conf. on Empirical Assessment & Evaluation in Software Engineering.

40. Improving the COCOMO model using a neuro-fuzzy approach. Huang, Xishi, et al. 1, Amsterdam, The Netherlands, The Netherlands : Elsevier Science, January 2007, Applied Soft Computing, Vol. 7, pp. 29-40 .

41. Comparison of artificial neural network and regression models for estimating software development effort. Heiat, Abbas. 2002, Information and Software Technology, Vol. 44, pp. 911-922(12).

42. AI Tools for Software Development Effort Estimation. Finnie, Gavin R. and Wittig, Gerhard E. Washington : IEEE Computer Society, 1996. International Conference on Software Engineering: Education and Practice . p. 346.

43. Boehm's. [Online] http://promisedata.org/repository/data/coc81/coc81.arff.

44. Adaptive fuzzy logic-based framework for software development effort prediction. Ahmed, Moataz A., Saliub, Moshood Omolade and AlGhamdi, Jarallah. 2004, Information and Software Technology.

45. An empirical validation of a neural network model for software effort estimation. Park, Heejun and Baek, Seung. s.l. : Elsevier, 2007, Expert Systems with Applications.

46. Extreme Learning Machine: Theory and Applications. G.-B. Huang, Q.-Y. Zhu and C.-K. Siew. 2006, Neurocomputing, Vol. 70, pp. 489-501.

47. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. 2004. International Joint Conference on Neural Networks. pp. 25-29.

9

