- In all the questions, you have to clearly justify your answers. out of 24
- Simple yes or no answers carries no value.
- Questions are worth three points each.

Name:

\qquad ID\#: \qquad

Q1: Let $A=B=C=Z$, and let $f: A \rightarrow B, g: B \rightarrow C$ be defined as: $f(a)=a-1$ and $g(b)=b^{2}-2 b+1$; then
a) Find $(g \circ f)(11)$.
b) Is g one-to-one?
c) Is g onto?

Q2: a) For the set $A=\{1,2,3\}$, find all the permutations on A.
b) Compute the product $(1,2) \circ(2,3) \circ(1,2,3)$.

Q3: Let $A=Z$ (all the integers) and let $a, b \in A$. Define the relation R on A as $a R b$ iff $a^{2}+b^{2}$ is even.
Is R an equivalence relation?

Q4: Let $A=\{1,2,3,4\}$ and let the relation R on A be defined as $R=\{(1,1),(1,3),(2,4),(3,1),(3,4),(4,2)\}$
Use Warshall's algorithm to compute the transitive closure of the relation R.

- . Q5: Let ($G, *$) be a group and let d be some element of G.

Let the function $f: G \rightarrow G$ be defined as $f(x)=d^{*} x^{*} d^{-1}$, for all $x \in G$. Show that f is an isomorphism.

Q6: Let G be the set of all real numbers and let $a * b=a+b+99$. Is ($G, *$) a group?

Q7: Let $A=\{1,2,4,5,7,8\}$ and let the operation * be defined as $a * b=a b \bmod 9$.
a) Draw the multiplication table of the group ($A, *$. .
b) What is the inverse of 4 ?
c) Find a subgroup S of $(A, *)$ such that $|S|=2$.
d) Can you find a subgroup S of $(A, *)$ with $|S|=4$? Why or why not.

Q8: a) Given the prime number $p=97$, find the inverse of 49 mod 97; i.e. find a number y such that $49 y \equiv 1(\bmod 97)$ [equivalently, $49 y \bmod 97=1]$ (Hint: use the GCD algorithm.)
b) Fill in the blank: 8^{97} m \qquad (mod 97)? Justify your answer.

