ICS 251 Foundations of Computer Science Final (25/12/1997) Time allowed: 2 hours

- In all the questions, you have to clearly justify your answers. out of 24

- Simple yes or no answers carries no value.

- Questions are worth three points each.

Name:	ID#:

Q1: Let A = B = C = Z, and let $f : A \rightarrow B$, $g : B \rightarrow C$ be defined as: f(a) = a - 1 and $g(b) = b^2 - 2b + 1$; then

- a) Find $(g \circ f)(11)$.
- b) Is g one-to-one?
- c) Is g onto?

Q2: a) For the set $A = \{1,2,3\}$, find all the permutations on A.

b) Compute the product $(1,2) \circ (2,3) \circ (1,2,3)$.

Q3: Let A=Z (all the integers) and let $a,b \in A$. Define the relation R on A as $aRb \text{ iff } a^2 + b^2 \text{ is even.}$ Is R an equivalence relation?

Q4: Let $A = \{1,2,3,4\}$ and let the relation R on A be defined as $R = \{(1,1),(1,3),(2,4),(3,1),(3,4),(4,2)\}$ Use Warshall's algorithm to compute the transitive closure of the relation R.

* Q5: Let (G,*) be a group and let d be some element of G. Let the function $f:G \to G$ be defined as $f(x)=d^*x^*d^{-1}$, for all $x\in G$. Show that f is an isomorphism.

Q6: Let G be the set of all real numbers and let a*b = a+b+99. Is (G,*) a group?

- Q7: Let $A = \{1,2,4,5,7,8\}$ and let the operation * be defined as $a*b = ab \mod 9$.
 - a) Draw the multiplication table of the group (A,*).

- b) What is the inverse of 4?
- c) Find a subgroup S of (A,*) such that |S|=2.
- d) Can you find a subgroup S of (A,*) with |S|=4? Why or why not.
- Q8: a) Given the prime number p = 97, find the inverse of 49 mod 97; i.e. find a number y such that $49y \equiv 1 \pmod{97}$ [equivalently, $49y \pmod{97} = 1$] (Hint: use the GCD algorithm.)

b) Fill in the blank: $8^{97} \equiv$ (mod 97)? Justify your answer.