KING FAHD UNIVERISTY OF PETROLUEM AND MINERALS INFORMATION \& COMPUTER SCIENCE DEPTV. DHAHRAN, KSA

ICS 251 FOUNDATION OF COMPUTER SCIENCE
 FALL 971

MAJOR EXAMINATION II

MAX. TIME ALLOWED 1:30 HOURS

NAME: \qquad ID NO.: SECTION:_1_OR_3

QUESTION	FULL MARKS	SCORE
1	21	
2	27	
3	12	
4	40	
TOTAL	100	

NOVEMBER 15, 1997

QUESTION 1 ［ 21 points］

Define the following and give an example of each：［ 3 points each］
1 A partition or quotient set

2 If R is a relation from A to B and $x \in A$ ．Define the $R(x)$ ，R－relative set of x ．

3 Symmetric Relation R on A．

4 Reflexive Relation R on A．

5 Transitive Relation R on A．

6 Equivalence Relation R on A ．

7 Symmetric closure of a Relation R on A．

OUESTION 2 [27 points]

Given the following two relations R and S on a set $A=\{1,2,3,4,6\}$:
$a R b$ if and only if a is a multiple of b, and $a S b$ if and only if $a+b \leq 9$
Find:
[4 points]
a) $\operatorname{Dom}(R)=$ \qquad ; $\operatorname{Dom}(S)=$ \qquad ; $\operatorname{Ran}(R)=$ \qquad ; $\operatorname{Ran}(S)=$
[14 points: $2.5,2.5,3,3,3]$
b) $M_{R}=\quad ; M_{S}=$
; $\mathrm{M}_{\mathrm{R}}{ }^{-1}=$
; $\mathrm{M}_{\mathrm{RUS}}=$
; $\mathrm{M}_{\mathrm{R} \wedge \mathrm{S}}=$
[9 points]
c) Is $M_{R . S}=M_{R} \vee M_{S}$? \quad; Is $M_{R \wedge S}=M_{R} \wedge M_{S} \quad$ Is $M_{R}{ }^{2}=M_{R} \circ M_{S}$

OUESTION 3 ［ 12 points］

Let $A=\{a, b, c, d\}, B=\{1,2,3\}$ ，and $C=\{\Omega, \Delta, \Phi\}$. Let R and S be the following relations from A to B and from B to C ，respectively．
$R=\{(a, 1),(a, 2),(b, 2),(b, 3),(c, 1),(d, 3),(d, 2)\}$
$S=\{(1, \Omega),(2, \Delta),(3, \Delta),(1, \Phi)\}$
a）Is $(b, \Delta) \in S^{\circ} R$ ？［ 4 points］
b）Is（c，$\Delta) \in S^{\circ} R$ ？［ 4 points］
c）Compute $S^{\circ} \mathrm{R}$ ．［ 4 points］

OUESTION 4 [40 points]

Let $S=\{1,2,3,4\}$ and let $A=S X S$. Define the following two relation R and S on A :
(a, b) $R\left(a^{\prime}, b^{\prime}\right)$ if and only if $a+b=a^{\prime}+b^{\prime}$.
$(a, b) S\left(a^{\prime}, b^{\prime}\right)$ if and only if $a b^{\prime}=a^{\prime} b$.
a) Show that R and S are equivalence relations. [20 points]
b) Show that $R \cap S$ is an equivalence relation. [10 points]
c) Is $R \cup S$ an eqnivalence relation in general ? If it is not an equivalence relathon, give a counter example to show that $R \cup S$ is not an equivalence relation in general. [10 points]

