KING FAHD UNIVERISTY OF PETROLUEM AND MINERALS INFORMATION & COMPUTER SCIENCE DEPT. DHAHRAN, KSA

ICS 251 FOUNDATION OF COMPUTER SCIENCE FALL 971

MAJOR EXAMINATION II

MAX. TIME ALLOWED 1:30 HOURS

NAME:		ID NO.:
SECTION: 1	OR 3	

QUESTION	FULL MARKS	SCORE		
1	21	- 1 0 € 1		
2	27			
3	12			
4	40			
TOTAL	100			

NOVEMBER 15, 1997

QUESTION 1 [21 points]
Define the following and give an example of each: [3 points each]

1	A partition or quotient set
2	If R is a relation from A to B and $x \in A$. Define the R(x), R-relative set of x.
3	Symmetric Relation R on A.
4	Reflexive Relation R on A.
5	Transitive Relation R on A.
6	Equivalence Relation R on A.
7	Symmetric closure of a Relation R on A.

OUE	STI	ON	2 1	77	noin	tel
		~			LOUI	

Given the following two relations R and S on a set $A = \{1, 2, 3, 4, 6\}$: a R b if and only if a is a multiple of b, and a S b if and only if $a+b \le 9$

Find:

[4 points]

a) Dom(R) = ____; Dom(S) = ____; Ran(R) = ____; Ran(S) = ____

[14 points: 2.5, 2.5, 3, 3, 3]

b) $M_R =$

 $; M_S =$

 $M_R =$

 $M_{R \cup S} =$

 $M_{R \cap S} =$

[9 points]

c) Is $M_{R \cup S} = M_R \vee M_S$? ; Is $M_{R \cap S} = M_R \wedge M_S$

, Is $M_R^2 = M_R \cap M_S$

OUESTION 3 [12 points]

Let A= $\{a, b, c, d\}$, B = $\{1, 2, 3\}$, and C = $\{\Omega, \Delta, \Phi\}$. Let R and S be the following relations from A to B and from B to C, respectively.

 $R = \{(a,1), (a,2), (b,2), (b,3), (c,1), (d,3), (d,2)\}$ $S = \{ (1, \Omega), (2, \Delta), (3, \Delta), (1, \Phi) \}$

- a) Is (b, Δ) ∈ S ° R ? [4 points]
 b) Is (c, Δ) ∈ S ° R ? [4 points]
 c) Compute S ° R. [4 points]

QUESTION 4[40 points]

Let $S = \{1, 2, 3, 4\}$ and let $A = S \times S$. Define the following two relation R and S on A:

(a, b) R (a', b') if and only if a + b = a' + b'. (a, b) S (a', b') if and only if a b' = a' b.

- a) Show that R and S are equivalence relations. [20 points]
- b) Show that $R \cap S$ is an equivalence relation. [10 points]
- c) Is R \cup S an equivalence relation in general? If it is not an equivalence relation, give a counter example to show that R \cup S is not an equivalence relation in general. [10 points]