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-Chapter 7
Connectionism and Determinism in a Syntactic Parser

STAN C.. KWASNY & KANAAN A. FAISAL

The processing of natural language is, at the same time, naturally symbolic and

naturally subsymbolic . It is symbolic because ultimately symbols play a critical role.

Writing systems, for example, owe their existence to the symbolic nature of language. It is

also subsymbolic because of the nature of speech, the fuzziness of concepts, and the high-

degree of parallelism that is difficult to explain as a purely symbolic phenomenon.

Building a processor of natural language, therefore, requires a hybrid approach. This

report details a set of experiments. which support the claim that natural language can be

syntactically processed in a robust manner using a connectionist deterministic parser. The

model is trained from patterns derived from a deterministic grammar and tested with

grammatical, ungrammatical and lexically ambiguous sentences.

KEYWORDS: Connectionism, determinism, learning, natural language processing , neural

networks, parsing.

1. Introduction

Connectionist approaches to natural language processing (NLP), while by most

accounts not as successful as symbolic approaches, stand as an important counterpoint.

In connectionism, there is the promise of robust decision making, generalization, and

other benefits of an extensional style of programming, while symbolic approaches enjoy

a history of linguistic study, the application of well-understood methods, and the
reassurance that only comes from computing intermediate structures . Clearly there are

benefits in both approaches.
Just as clearly there are drawbacks . Symbolic approaches tend to be brittle and

intolerant to minor variations . Symbolic systems often contain rules which are difficult

to compose or learn symbolically . Subsymbolic NLP is still an exploratory endeavor

and generally cuts against conventional wisdom by not supporting hierarchical and
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stack-like data structures . These models often impose critical limitations such as

limiting the maximum lengths of their input sentences arbitrarily or limiting the

iterative nature of the processing.
The processing of natural language is , at the same time, naturally symbolic and

naturally subsymbolic. It is symbolic because ultimately symbols play a critical role.
Writing systems, for example, owe their existence to the symbolic nature of language.
It is also subsymbolic as seen in the nature of speech, the fuzziness of concepts and
the high degree of parallelism that is difficult to explain as a purely symbolic

phenomenon.
This paper investigates the marriage between connectionism and rule-based deter-

ministic parsing, although the distinction between a subsymbolic component and a
symbolic component is maintained. With the correct architecture such a system can
retain the benefits of each approach and overcome many of their difficulties.

Any plausible model of language processing should permit alternative linguistic
structures to compete while inputs are processed left-to-right. Computer models based
on backtracking (e.g. Augmented Transition Networks (ATNs) or Definite Clause
Grammars (DCGs)) do not adequately capture the competitive nature of sentence
processing. Furthermore, there is no evidence from human experiments that any

conscious reprocessing of inputs is routinely performed. The lone exception is perhaps

for `garden path' sentences.
A good example of competition can be found in the TRACE model of speech

perception (McClelland & Elman, 1986). In that work, competing interpretations of
the pseudo-speech feature vectors are proposed and activation levels rise or fall as each
potential interpretation is supported or contradicted. Parsers should permit syntax and
other levels of processing to aid in resolving lexical ambiguities just as ambiguous

phenomes were resolved in TRACE.
Autonomous syntactic parsing, as Birnbaum (1989) argues, is an activity of

questionable value in language processing. A parser which purports to build syntactic

structures in isolation from semantic, contextual or other components of the system
will have difficulty succeeding completely. This is easily shown by considering
examples which are genuinely ambiguous. However, a parser which supports competi-
tion in the sense described above is well-positioned to accept influence from these
components and cooperate with them in constructing an appropriate structure. Al-
though further work in this direction is necessary, our approach supports competition

among structural choices precisely in the cases where such outside influences can and

should make the critical difference.
Classically, parsers process inputs iteratively from an unbounded stream of input.

Neural network parsers typically do not work iteratively and have limits imposed
artificially on the length of the sentence (Fanty, 1985; Selman & Hirst, 1985; Waltz &

Pollack, 1985). In classic approaches , natural language processing by computer is
These are

often e
xeruted as if

performed under the direction of a set of grammartrules .
sentence

following instructions in a program.
processing, then this method is incorrect. Rules should be permitted to play an
advisory role only-that is, as descriptions of typical situations and not as prescrip-

tions for precise processing . Control in the application of a rule or variant of a rule

should be determined jointly as a data-driven and expectation-driven process.

Symbolic rules are an essential part of most linguistic accounts at virtually all

levels of processing, from speech signal to semantics . But systems based literally on

rules tend to be brittle since there is no direct way to process linguistic forms that do
not strictly adhere to the preconceived rules. If a complete set of rules for all
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meaningful English forms existed, then this might be satisfactory. But no such set of
rules exists, nor does it seem desirable or even possible to construct such a set.
Furthermore, the rules would have a difficult time capturing `degrees of grammatical-
ness ' (Chomsky, 1965).'

Another consequence of a rule-based grammar is that acquisition of new grammar

rules often requires tedious re-tuning of existing rules. Rarely can a rule be added to

the grammar without it affecting and being affected by other rules in the grammar. To
the credit of their creators, some grammars have been continually refined over a period
of years, even decades, in an attempt to depict more accurately the processing

requirements of English. The only solution to this problem in a practical and realistic

_manner is through learning.
Chomsky (1965) popularized a fundamental linguistic distinction between compe-

tence and performance in language. The field of linguistics has historically centered on
the study of competence, while virtually ignoring the more difficult issue of perform-
ance except, for example, in certain psycholinguistic studies. Developers of NLP
systems have had to deal more with performance issues despite the lack of a solid
theoretical foundation for doing so. This has led to some elegant natural language
systems which nonetheless contain ad hoc components to deal with performance, if
they deal with it at all.

The problems this raises for rule-based NLP systems can. be attacked through
learning. Given sufficient flexibility, a trainable system can be taught syntactic rules
and then be led to adapt to those cases where the rules fail. The competence rules of a
grammar can be taught in concert with performance examples. While strictly symbolic
learning may be possible, such systems typically need to invent new symbols to extend
their capabilities and this imposes limitations on the approach. Connectionism holds
promise for attacking these problems.

2. Determinism and NLP

The determinism hypothesis which forms the basis for PARSIFAL (Marcus, 1980)
imposes important restrictions on natural language processing. It states (p. 11) that:

Natural Language can be parsed by a mechanism that operates `strictly
deterministically' in that it does not simulate a nondeterministic machine ...

If we accept this hypothesis, it must follow that NLP need not depend in any
fundamental way on backtracking. As a further consequence, no partial structures are
produced during parsing which fail to become part of the final structure. PARSIFAL
was the first of a number of systems to demonstrate how deterministic parsing of
natural language can be performed using a rule-based grammar. Extensions to PARSI-
FAL have been researched independently including the parsing of ungrammatical
sentences in PARAGRAM (Charniak, 1983), the resolution of lexical ambiguities in
ROBIE (Milne, 1986), and the acquiring of syntactic rules from examples in LPARSI-
FAL (Berwick, 1985).

Deterministic, 'wait-and-see' parsers process input sentences primarily left-to-
right. Determinism is accomplished by permitting a lookahead of up to three constitu-
ents with a constituent buffer designated for that purpose. To permit embedded
structures, a stack is also part of the architecture. Rules are partitioned into rule
packets which dynamically become active or inactive during parsing, but are usually
associated with the current (top-level) node of the structure being built. A single
processing step consists of selecting a rule that can fire from an active rule packet,
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firing the rule, and performing its action. Conflicts are resolved from the static
ordering (priority) of rules within the packet. The action effects changes to the stack
and buffer. After a series of processing steps, a termination rule fires and processing is
terminated. The final structure is left on top of the stack.

--------l------------
I PARAGRAM LPARSIFAL ROBIE

1 (Chuniak) (Berwick) (Milne)

I I
El-Formed Gnmtnar Lexical I

Selnences Leandn Atnbi it

Sentence

Fcoasaing

PARSIFAL (Munn) I
I I

L-------------------------------------

CDP

Figure 1 . Deterministic parsing systems.

As Figure 1 illustrates, the three extensions to PARSIFAL are all derivatives of

deterministic parsing, but represent independent solutions in specific problem areas.
The integration of their processing capabilities is one goal of our work (Kwasny et al.,

1990). The ultimate goal is to produce a parser that is capable of learning some

reasonable facility with language, but does not fail on inputs that are only slightly

different from the inputs it is designed to process.

2.1. Connectionist Deterministic Parsing

Exploring the consequences of the determinism hypothesis has led to an architecture

for a connectionist deterministic parser called CDP. CDP represents a departure from

traditional deterministic parsers by introducing a subsymbolic component . The sym-

bolic component manages the data structures and other components of a traditional

parser, while the subsymbolic component is trained with patterns derived from rules of

a deterministic grammar to make decisions during parsing . Our results are consistent

with the determinism hypothesis in that they provide evidence that natural language
interpretation for all but some varieties of `garden-path ' sentences can be deterministi-

cally performed with a stack, a buffer for sentence constituents , actions for then

manipulation, and a mechanism for deciding which actions to perform . For PARSI-

FAL (Marcus, 1980), the latter is realized as partitioned packets of rules. In CDP, it is

realized as a connectionist neural network.
CDP combines the concepts and ideas from deterministic parsing together with the

generalization and robustness of connectionist , adaptive (neural) networks. The

combination of these ideas was first suggested by McClelland & Kawamoto . ( 1986,

p. 317), but our approach differs somewhat from the case -based approach they

advocate . Training sequences are derived from the rules of a deterministic grammar by
coding them for use during training.
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Parsing experiments are described that permit decision making in the parsing
process to be performed by the subsymbolic component. Some simplification over
traditional deterministic parsers is realized including the elimination of rule packets
and priorities . Furthermore , parsing is performed more robustly and with more
tolerance for error . Data are presented which show how a neural network trained with
syntactic rules can parse both expected (grammatical) sentences as well as some novel
(ungrammatical or lexically ambiguous ) sentences . In comparison with symbolic
deterministic parsing systems, CDP performs favorably, but its performance depends
on the extent and nature of the training. Once trained, the network is efficient, both in
terms of representation and execution.

Aside from demonstrating that the symbolic/subsymbolic combination improves
NLP, our goal is to duplicate previous results on deterministic parsing and test the
generalization capabilities of the system . Our engineering goal is simply to demonstrate
that an appropriately designed and trained neural network can capture the same
generalities as the rule packets. Another goal is one of economy. Can the effort of
grammar design be minimized? Specifically, can traces of processing activity, appropri-
ately coded, serve as training data for grammar learning? Evidence is presented which
demonstrates this activity.

Some small modifications to deterministic grammar rules are necessary to ensure
the suitability of each rule for use with our `winner-take-all' network. Many of these
changes are simplifications that have been proposed by others and are not essential to
the success of our approach. All these changes are made without altering the
capabilities represented in the original set of rules. Changes include: elimination of the
packet system; removal of attention-shifting rules; removal of rule priorities; reduction
of lookahead to two positions instead of three; and revision of the rules so that a single
action is performed by each. The reduction to two buffer positions follows the lead of
Milne (1986).

Rule Main-verb in packet parse-vp

priority: 10

IF: The first element in buffer is a verb

THEN:

DEACTIVATE packet parse-vp
if the active node is a major sentence
then ACTIVATE packet ss-final

else if the active node is a secondary sentence
then ACTIVATE emb-s-final.

CREATE a VP node.

ATTACH a VP node to the S.

ATTACH the first element in the buffer to
the active node as verb.

ACTIVATE the clause level packet cpool
if verb is labeled passive
then ACTIVATE the packet passive

and RUN the grammar rule passive next.

Rule Create-VP

IF: current node is S node
Attached is AUX node

first is a verb

THEN:

Rule Main verb

THEN:

Figure 2. PARSIFAL and CDP rules compared.

CREATE VP node

current node is VP node
Attached is AUX node
first is a verb

ATTACH as MVB
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As an example , consider part of one sample grammar rule from PARSIFAL and its
reformulation in CDP . Figure 2 shows the two styles side by side. Rule actions are in
capital letters ; rule names are in bold . In the PARSIFAL rule, a priority number is
given explicitly and the rule contains multiple actions and conditionals similar to a
programming language . It explicitly activates and deactivates rule packets , executes
rules, creates new phrase structure nodes, and tests for complex properties of the
elements in the buffer.

CDP rules eliminate many of these details without changing the capabilities of the
grammar . In the figure, two of several rules derived from the Main-verb rule are
shown . In the first rule, a new VP active node is created on the stack and in the second
rule the verb is attached as a main verb to the active node (VP) on top of the stack.

With the elimination of rule packeting, no priorities nor explicit packet activa-
tions/deactivations are required. While this mechanism is precisely what is required
for efficient design of a symbolic parser, priorities are at the essence of what is learned
when training the subsymbolic component of CDP.

Actions such as creating and attaching or selecting the argument structure of the
verb are carried out symbolically in CDP. Also, a symbolic lexicon is consulted to
determine the properties of words. When a predicate such as a verb is encountered, the
requirements or expectations for its arguments are made part of the features of the
active VP node, thus affecting which actions will be executed later on.

2.2. Evolutionary Steps from PARSIFAL

Elimination of the packet system. In PARSIFAL, rules are organized into packets. Only
those rules in an active packet are considered while processing . Often , more than one
packet is active. For example, the packet CPQOL , or clause level packet , is always
active. Since CDP has no packets, every rule is considered in parallel with the situation
dictating which action should be taken.

Removal of attention -shifting rules. PARSIFAL relies on attention -shifting rules
transparently to build certain constituents , particularly NPs, which begin in the second
buffer position . For example, in the sentence taken from Marcus: Have the students
who missed the exam taken the makeup today?, the subject-aux inversion mechanism
(switch) must be deliberately postponed until the NP starting in the second position is
analyzed as a complete constituent . Only then can the inversion take place . PARSI-
FAL solves this problem by temporarily shifting buffer positions so that the parser is
viewing the buffer beginning in the second position . The second leftmost complete
constituent (the NP) is then reduced before the first element constituent. We follow
the lead of Berwick ( 1985 ) and others in our treatment of such cases by using the
parse stack as a `movement stack ' and stack the postponed item . Two actions, PUSH
and DROP, are suitable for this purpose . In the example above, the end of the noun
phrase, the students, cannot be determined without applying the rules to the embedded
clause . When complete, the NP is dropped into the buffer and the auxiliary verb can
be re-inserted into the buffer allowing the inversion to take place . Note that at no
point is the `monotonic ' property of determinism violated by undoing previous actions.

Removal of rule priorities . In PARSIFAL, rules are ordered by priority. In CDP, rules
have no priority . They compete with each other and the most relevant rule, based on
training, wins the competition. Only one action, corresponding to the firing of one
single-action rule, will be performed on each processing step . The current active node
and its attachments along with the contents of the two buffer cells is the basis for this



Connectionism and Determinism 125

decision. The rules are coded in such a way that every rule has a unique left -hand side
and is thus relevant to situations most similar to its left-hand side pattern.

Restriction of grammar rule format. The format of grammar rules in CDP is different
from PARSIFAL in two ways. First, grammar rules are forbidden to have more than a
single action which is performed on the first buffer cell only; and second , rule patterns
are always defined to test items in both buffer positions. The single action rule
modification was first demonstrated by Berwick (1982).

Grammar actions. The repertoire of rule actions is slightly different in CDP. Actions
such as ACTIVATE and DEACTIVATE have been removed. The basic actions are:

(a) ATTACH as (node): The first item in the buffer is attached through an intermedi-
ate descriptive (node) to the current active node.

(b) CREATE (type): Generates a new node of type (type) and pushes it onto the parse
stack as the current active node.

(c) DROP: Pops a node or an item off the top of the stack and inserts it into the
buffer in the first buffer position. The previous contents of the buffer is shifted
back by one position.

(d) INSERT (item): Inserts the designated item into the buffer in the -first buffer
position. The previous contents of the buffer is shifted back by one position. In
the general form, only a small number of designated lexical items (you, to, be,
wh-marker) can be inserted. The special form INSERT TRACE inserts an
(unbounded) NP trace.

(e) LABEL (feature): Adds designated feature to the first buffer item.
(f) PUSH: Pushes an item onto the stack for temporary storage whenever the parse

stack is used as a movement stack.
(g) SWITCH: Exchanges the items in the first and second buffer positions.

These are the only actions the grammar rules can perform. The buffer is managed
symbolically and if a position is vacated an item is taken from the input stream to fill
the position. The subsymbolic component can only examine the current active node, its
immediate attachments and the features of the first two buffer items. Once a node is
attached to its parent, it can never again be examined.

3. Architecture of CDP

As Figure 3 illustrates, CDP is organized into a symbolic component and a subsym-
bolic component. The latter component is implemented as a numeric simulation of an
adaptive neural network. The symbolic and numeric components cooperate in a tightly
coupled manner since there are proven advantages to this type of organization
(Kitzmiller & Kowalik, 1987). For CDP, the advantages are performance and robust-
ness.

The subsymbolic component of CDP is composed of a connectionist network
trained using backward propagation (Rumelhart et al., 1986 ; Werbos, 1974) from rule
templates which are derived from the deterministic grammar. Rule templates are
intermediate between symbolic rules and the training patterns required by the network.
Each rule template is composed from one symbolic rule and typically represents a large
number of patterns. They serve to relate situations that occur during parsing with the
action deemed appropriate for that situation.



12 6 Connectionist Natural Language Processing

SUB-SYMBOLIC SYMBOLIC

Coded Actions

Coded Stack & Buffer

Buffer

I IJohn should

Stack

I I I should Fuve ,

l the nuUinI h d
`

he-- have scheduled the meeting.

r ----------------------
s\

,

P

MYB %P

e u

L ---------------------- J

Figure 3. CDP system overview.

The symbolic component manages the input sentence and the flow of constituents
into the lookahead buffer, coding them as required for the input level of the network.
On the return side , it evaluates the activations of the output units , decides which
action to perform , and performs that action, modifying the stack and buffer as required
in the process . Actions in CDP are performed symbolically on traditional data
structures which are also maintained symbolically . The responsibility of the subsym-
bolic component, therefore , is to examine the contents of the buffer and stack and
yield a preference for a specific action. These preferences are garnered from many
iterations of backpropagation learning with instances of the rule templates . Learning
itself occurs off-line and is a time -consuming process, but once learned the processing
times for the system are excellent . Computations need only flow in one direction in the
network. The feedforward multiplication of weights and computation of activation
levels for individual units produce the pattern of activation on the output level.
Activation of output units is interpreted in a winner -take-all manner, with the highest
activated unit determining the action to be taken.

During sentence processing, the network is presented with encodings of the buffer
and the top of the stack . What the model actually sees as input is not the raw sentence
but a canonical feature-based representation of each word in the sentence in a form
that could be produced by a simple lexicon, although such a lexicon is not part of the
model in its present form . The network produces the action to be taken which is then
performed . If the action creates a vacancy in the buffer and if more of the sentence is
left to be processed then the next sentence component is moved into the buffer. The
process then repeats until a stop action is performed , usually when the buffer becomes
empty. Iteration over the input stream is achieved in this fashion.

- Figure 3 illustrates the nature of the processing . When a sentence form like `John
should have scheduled the meeting ' appears in the input stream , the first two
constituents fill the buffer as shown . These contents along with the contents of the top
of the stack and its attachments are encoded and presented to the network. The
network, in turn, produces a single action which is then executed symbolically , yielding
changes in the buffer and stack. This process repeats until a stop action is performed,
at which time the resultant parse structure is left on top of the stack as shown.

Training of CDP proceeds by presenting patterns to the network and teaching it to
respond with an appropriate action . The input patterns represent encodings of the
buffer positions and the top of the stack from the deterministic parser. The output of
the network contains a series of units representing actions to be performed during- -
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processing and judged in a winner-take-all fashion. Network convergence is observed
once the network can achieve a perfect score on the training patterns themselves and
the error measure has decreased to an acceptable level (set as a parameter). Once the
network is trained, the weights are stored in a file so that sentences can be parsed. A
sentence is parsed by iteratively presenting the network with coded inputs and
performing the action specified by the network.

There are two distinct approaches to training a network to parse sentences:
deductive and inductive. Each of these training strategies results in a slightly different
version of CDP. The difference lies in the nature of the training patterns presented.
One approach uses rule templates, training patterns derived from the rules. This type
of learning is deductive in the sense that a general form of each rule is learned from
which the parser must derive actions specific to individual cases. The second approach
uses training data derived from sentence processing traces. This form of training is
inductive in the sense that the parser must arrive at general patterns of performance
from the specific instances presented.

For deductive training, each constituent is replacing with its coding and a rule
template is created. Each grammar rule is coded as a training template which is a list of
feature values. In general, each constituent is represented by an ordered feature vector
in which one or more values is ON(+1) for features of the form and all other values
are either OFF(-1) or DO NOT CARE (?). A rule template is instantiated by
randomly changing.? to + 1 or -1. The probability of a ? becoming a + 1 or - I is
equal and set at 0.5. Thus, each template can be instantiated to give many training
patterns and each training epoch is slightly different. It is obviously impossible to test
the performance of all these cases, so for the purposes of judging convergence, a zero is
substituted for each ? in the rule template to provide testing patterns.

A second type of training for the network uses training patterns derived from
traces of the situations encountered and actions performed during the processing of
actual sentences. Inductive learning begins with training data derived as `sentence
traces' of deterministic parsing steps. Training proceeds by presenting patterns of
these steps to the network and teaching it to respond with an appropriate action. This
processing is guided by application of the rules of a deterministic grammar as before.

PARSIFAL is simulated in this way and the task of the inductively-trained CDP
parallels that of LPARSIFAL. In LPARSIFAL the object is to learn (symbolic)
grammar rules from examples of correct sentences. The success of this task is gauged
by directly comparing the rules learned to those of PARSIFAL. In CDP inductive
training requires the network to exhibit the correct rule-following behavior after being
trained with a sample of sentence traces. Training occurs through the mechanism of
backward propagation. No symbolic rules are learned as such, but the behavioral
characteristics of the rules are captured within the parameters of the network.

CDP, therefore, can exhibit different properties depending on the patterns used in
training. Inductive learning takes longer than deductive learning because more data is
required. Also, the range of sentence types handled. depends greatly on the complete-
ness of the examples presented. Deductive training imposes an ordering on the training
patterns that assures a completeness which is difficult to achieve with inductive
training, but inductive training patterns reflect the frequency of rule occurrences seen
in actual sentence processing. For more discussion of the training process, see Faisal &
Kwasny (1990).

4. Experimentation

Experiments are conducted to determine the effectiveness of training and to investi-
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gate whether the connectionist network generalizes properly to ungrammatical and
lexically ambiguous cases. In comparison with other deterministic parsing systems,
CDP outperforms any single system known. Our experimentation shows results of
tests performed with examples drawn from PARSIFAL, PARAGRAM and ROBIE.
Much of the performance depends on the extent and nature of the training, of course,
but our results show that through proper training a connectionist network can indeed
exhibit the same behavioral effect as the rules, but with the advantages of extensional
programming.

For each sentence processed, the `average strength ' of the responses made by the

network is computed . Average strength for each sentence is computed as the reciprocal
of the average error per processing step. On each step, the winning output unit is
determined and the error is computed as the Euclidean distance between the actual
output vector and an idealized output vector (the corner of the hypercube). The
reciprocal of the error is the strength of the step. These errors are summed and
averaged to give the average error per processing step. The reciprocal of this average
gives the average strength as shown . Average strength reflects the certainty with which
individual actions for building structures are being selected. Although there is no real
meaning in the values of these numbers, they are a useful means of comparison. They
also indicate to what extent other responses are competing with the winner.

Deductive training generally performs well on all generalization tasks and outper-
forms inductive training by scoring higher on all experiments. Reasons for this include
the specificity of the inductive training data as well as the lack of a large amount of
training data in the inductive case required to provide sufficient variety.

4.1. Target Grammars

CDP as a system permits experimentation with different grammars which require
different net*orks representing different numbers of units, weights and actions. Our
experimentation has examined three different target grammars, which we shall call
small, medium and large. Figure 4 shows some of the characteristics of these grammars
for comparison. Each grammar contains a set of rules. The number of rules reflects the
capability of that grammar and the amount of training necessary to achieve conver-

Target Grammars

Small Medium Large

Number of Rules 13 22 73

Number of Actions 5 20 40

Network Size (units) 44-15-5 35-20-20 66-40-40

Network Size (weights) 735 1100 4240

Presentations (x 1000) 200 500 1000

Based On Example

(Winston , 1984)

Appendix C

(Marcus, 1980)

Appendix D

(Marcus, 1980)

Figure 4. Summary of target grammars used in CDP.
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gence so that the network can correctly perform as the rules . The network configura-
tions reflect the increase from five to 20 to 40 actions reflecting the increase in
complexity across the three grammars . A variety of training runs have been made with
each grammar. Shown is the number of presentations of training patterns made to
provide the results discussed.

4.1.1. The small grammar . In our initial attempt to demonstrate the feasibility of our

approach (Kwasny, 1988), a small , simple grammar is used. This grammar is based on

an example from the Winston text ( 1984 ) and contains 13 rules with five-actions. The
network requires 44 input units to encode the stack and three-place buffer. This
comparatively large number of input units reflects our decision at that point in the
project to stay as true as possible to PARSIFAL. Three positions of the buffer are
encoded with each position allocated an identical number of units. Our choice of 15
hidden units is determined empirically.

The grammar can produce parse structures containing S, NP, VP and PP nodes. A
preprocessing step for noun phrases is assumed, so that NPs have structure before

entering the buffer. Coding of three rule packets (S, VP and PP) as rule templates
provides training data for the 44-15-5 unit network. Perfect performance, as deter-
mined by presentation of a limited number of test sentences, is achieved for the 13
grammar rules coded. With such a limited grammar there are not many different
sentence patterns to be tested and therefore no generalization experiments of interest

can be reported.
With the small target grammar an attempt is made to keep the coding scheme in

line with the rule version, but at the expense of a sparsely coded network and one that
consequently takes many training cycles even though what is being learned is

somewhat simple. The rule partitioning of the PARSIFAL rules is realized directly in
the coding of the data and therefore no hand partitioning is required. Attachments to
nodes on the stack are also part of the coding.

Actions are coded as output to be learned by the network. In this example, possible
actions are Attach (first item), Create VP, Create PP, Drop and Stop. The task to be
learned by the network can be viewed as a simple classification task in which
configurations occurring during parsing are classified according to the action needed to
continue processing.

4.1.2. The medium grammar. Even though the medium grammar has just under twice
the number of rules as the small grammar , it is much more sophisticated than the small
one. Appendix C of Marcus (1980) serves as the model for the rules of this grammar.
In Appendix C, Marcus collects the set of rules used to illustrate the mechanisms of
deterministic parsing in his thesis and thus all the basic mechanisms of deterministic
parsing are demonstrated in this grammar. Successful performance with this grammar
can be taken as a demonstration of successful realization of the very enterprise of
connectionist deterministic parsing. Following the lead of Milne (1986), the buffer
size in our version of the grammar has been reduced from three to two constituents.

The medium grammar is capable of processing a variety of simple sentence forms

such as simple declarative sentences , simple passive , and imperative sentences as well

as yes-no questions . It permits reasonable generalization experiments to be conducted.
For testing and comparison purposes several sentences are coded that would parse

correctly by the rules of the deterministic parser . Also, several mildly ungrammatical

and lexically ambiguous sentences are coded to determine whether the network would
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generalize in any useful way. The objective is to test whether syntactic context could
aid in resolving such problems.

In the set of experiments conducted with this grammar some of the differences
between deductive and inductive training are illustrated. For deductive training, the
training templates are derived from the deterministic grammar as before, and for
inductive training a small set of positive sentence examples were traced which resulted
in 64 unique training patterns (see Faisal & Kwasny, 1990; Kwasny & Faisal, 1989a).

4.1.3. The large grammar. In a third set of experiments, a much larger and more
general grammar , based loosely on Appendix D in Marcus (1980), is used. In this case,
the grammar consists of 73 rules and represents rules for parsing sentence forms such
as simple declarative sentences, passives, imperatives, yes-no questions, wh-questions,
wh-clauses and other embedded sentences . The grammar to be learned by the
subsymbolic system can be separated into base phrase structure rules and transforma-
tional-type rules. The base structure system can be further broken down into rules for
NPs. VPs, auxiliaries, main sentence, PPs and embedded sentences. Transformational
rules fall into two groups: simple local transformations (e.g. subject-aux inversion) and
major movement rules (e.g. wh movement). In general, for each type of phrase,
creation of the phrase (creating a new node on the active node stack) and completion
of the phrase (dropping it into the buffer) is carried out by a separate grammar rule
action.

The rules for analyzing verb phrases discriminate among verbs that take different
kinds of complements. For example, verbs that take a wh complement are discrimi-
nated from ones that take a that complement. Verbs like want that take either a
missing or lexical subject in embedded sentential complements are separated from
verbs like try or believe that do not take a lexical subject. Verbs that take one NP
object are distinguished from ones that take two NP objects through lexical features.

As with the medium-sized grammar, several sentences are coded that would parse
correctly by the rules of the deterministic parser. Additionally, several mildly ungram-
matical and lexical ambiguous sentences are coded to determine how the network

trained on this larger grammar generalizes . All these examples are derived from those
presented in PARAGRAM and ROBIE. Our objective is to determine whether the
same generalization properties of the medium grammar would hold when scaled up to
a much larger and more realistic set of grammar rules. The large grammar is a major
focus of a recent DSc thesis (Faisal, 1990).

4.2. Parsing Grammatical Sentences

Experimentation with grammatical sentences demonstrates the ability of CDP to
process sentences exactly as the rules would. Earlier we mentioned that testing for the
purpose of establishing convergence is possible from the rule templates by changing
the ? to a zero value. The Small grammar converges in this sense and can parse
sentences of the form

NP, moved NP6 to NP,

With the two larger grammars more extensive testing is performed with actual
sentences. the performance of CDP is first examined with grammatical sentences. --
These are, by our definition, those sentence forms which parse correctly in the rule-
based grammar from which we derived the training set. Tables I and II show several-
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Table I. Grammatical sentences used in testing the medium
grammar

Sentence form
Deductive

avg. strength
Inductive

avg. strength

(1) John should have schedule the meeting . 283.3 84.7

(2) John has schedule the meeting for Monday. 179.3 84.2
(3) Has John schedule the meeting? 132.2 64.4
(4) John is scheduling the meeting . 294.4 83.5
(5) The boy did hit Jack.. 2983- 76.2
(6) Schedule the meeting . 236.2 67.8.
(7) Mary is kissed. 276.1 84.9
(8) Tom hit(v) Mary. 485.0 80.3
(9) Tom will(aux) hit(v) Mary. 547.5 7817

(10) They can(v) fish(np). 485.0 80.3
(11) They can(aux) fish(v). 598.2 76.8

Table II. Grammatical sentences used in testing the large grammar

Sentence form

Deductive
avg. strength

(12) John should have schedule the meeting for Monday. 56.9
(13) Scheduled a meeting for Monday. 29.4
(14) Has John schedule the meeting for Monday? 36.8
(15) John has scheduled the meeting for Monday. 55.1
(16) The meeting has been scheduled for Monday. 565.5
(17) The meeting seems to have been Tcheduled for Monday. 70.8
(18) The jar seems broken. 5.3
(19) I persuaded John to do it. 39.7
(20) I saw him do it. 38.2
(21) Mary wants John to have a party. 46.5
(22) Mary wants to have a party. 57.9
(23) What will the man put in the corner? 376.2
(24) What will the man put the book in? 23.7
(25) Who did John see? 427.3
(26) Who broke the jar? 38.3
(27) Who is carrying the baby? 61.0
(28) What is the baby carrying? 11.5
(29) What did Bob give Mary? 32.1
(30) The man who wanted to meet Mary has disappeared. 33.0
(31) The man who hit Mary with a book has disappeared. 29.2
(32) The man whom Mary hit with a book has disappeared. 254.5
(33) I told that boy that boys should do it. 19.9
(34) That mouse that the cat chased had squeaked. 8.8
(35) I told Sue you would schedule the meeting. 4.3
(36) I told the girl that you would schedule the meeting. 5.8
(37) John is scheduling the meeting for Monday. 54.7
(38) The boy did hit Jack. 137.7
(39) Tom hit(v) Mary. 29.5
(40) Tom will(aux) hit(v) Mary. 125.8
(41) The will(noun) gave the money to Mary. 61.9
(42) They can(v) 8sh(np). 30.0
(43) They can(aux) fish(v). 6.3
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examples of grammatical sentences which are parsed successfully in both the medium
and the large grammars along with their average strengths.

Each example shows a relatively high average strength value, indicating that the
training data has been learned well. The medium grammar shows data for the two
forms of training, deductive and inductive. The deductive average strength value is
higher, in almost all cases, than the corresponding inductive average strength.
Although comparisons are difficult to make due to variations in the number of unique
training patterns and other factors, the deductively-trained network exhibits uniformly
more definitive decisions than the inductively-trained network.

Many of these sentences are used in testing the symbolic deterministic parsing
systems described earlier . Parse trees are developed which are identical with ones
produced by those systems. Sentences (8)-(11) and (39)-(43), which contain ambi-
guous words, are presented unambiguously with lexical choices shown in parentheses.

Experimentation with grammatical sentences confirms that indeed the rules from
these grammars have been learned sufficiently to parse sentences as with the small
grammar. However, capabilities described thus far only duplicate what can be done
rather comfortably using a symbolic approach. What other features does the model
possess? Importantly, how robust is the processing?

4.3. Parsing Ungrammatical Sentences

PARAGRAM extends PARSIFAL to handle ungrammatical sentences. In PARA-
GRAM, this is accomplished by considering all rules in parallel and scoring each test
performed on the left-hand side of a rule according to predefined weights. The rule
with the best score fires. In this way, processing will always have some rule to fire.
Reported experimentation with PARAGRAM shows this to be an effective method of
stretching the inherent capabilities of the grammar.

For CDP, an important test of its generalization capabilities is its response to novel
sentences. This is strictly dependent upon its training experiences since in deductive
training no relaxation rules (Kwasny & Sondheimer, 1981), meta-rules (Weischedel &
Sondheimer, 1983), or other special mechanisms are added to any of the sets of rules'
to handle ungrammatical cases. Likewise , in inductive training no ungrammatical
sentences are used. Experiments consist of testing a few ungrammatical , but meaning-
ful sentences that are close to the training data and within the scope of our encoding
for each grammar.

Selected ungrammatical sentences are properly processed as a direct result of the
generalization properties of learning . When presented an ungrammatical sentence, i.e.
one for which the rules of the grammar would fail to find a parse, the network
automatically relates the situations arising during parsing to similar situations on which
it has been trained. The tendency Lis for it to select the closest situation. Very often this
generates precisely the response required to relate the deviant form to one that is not.

Table III . Ungrammatical sentences used in testing the medium grammar

Deductive Inductive

Sentence form avg. strength avg. strength

(44) *John have should schedule the meeting . 25.1 6.6

(45) Has John schedule the meeting ? 38.1 18.2

(46) *John is schedule the meeting . 4.7 4.9t

(47) The boy did hitting Jack . 26.6 7.5t



Connectionism and Determinism 133

In Table III a few ungrammatical sentences are shown that were tested with the
medium grammar . These examples have produced reasonable structures in our judg-
ment when presented to our system . They are shown in the table with their response
strengths . Note that overall average strength is lower for ungrammatical sentences
when compared to similar grammatical ones.

MVa

he

P

scheduled the meeting

Figure 5. Parse of `*John have should schedule the meeting'.

In sentence (44), for example, the structure produced is identical to that produced
while parsing sentence (1), but with lower strength in the inductive case. The only
difference is that the two auxiliary verbs, have and should, are reversed as shown in
Figure 5. Sentence (45) contains a disagreement between the auxiliary has and the
main verb schedule and yet the comparable grammatical sentence (3) parsed identically
in both approaches, but with lower strength again in the inductive approach.

Sentence (46) can be compared with sentence (4). In the deductive case, a
structure similar to that built for sentence (4) is indeed constructed. However, in the
inductive case (marked with t), the network attempts to process `is' as if it were
indicating the passive tense. Although this is incorrect for this sentence, it is not an
unreasonable choice given the particular training data used. Sentence (47) can be
compared with sentence (5), but there is not one clear choice in how the sentence
should appear if grammatical. The deductive-trained network processes sentence (47)
as sentence (5), while the inductive result (marked with t) shows the sentence
processed as if it were progressive tense ('The boy is hitting Jack'). In PARAGRAM, a
nonsensical parse structure is produced for sentence (47), as reported by Charniak
(1983, p. 137). The problems associated with using a syntax-based approach to
handling ungrammatical sentences are well-known (see, for example , Kwasny, 1980).

To demonstrate generalization after scaling up, CDP is trained with the large
grammar and again tested with several examples of ungrammatical sentences. As with
the medium grammar, no special mechanisms were added to handle ungrammatical
cases. In Table IV ungrammatical sentences used in testing are shown along with their
average strengths. As before, these examples produce reasonable structures when
presented to our system and overall average strength is lower for ungrammatical
sentences when compared to similar grammatical ones.

In sentence (48), for example, the structure produced is identical to that produced
while parsing sentence (12). The only difference is that the two auxiliary verbs, have
and should, are reversed in the parse tree. Such scrambling of words is beyond the
capabilities of PARAGRAM as pointed out by Charniak (1983, p. 138). Sentence (49)
contains a disagreement between the auxiliary has and the main verb schedule, and but
parsed identical to sentence ( 14). Sentences (50) and (51 ) parse comparable to
sentence (37). Sentence (51), in fact, demonstrates how the presence of extra words
does not deter CDP as it did PARAGRAM (Charniak, 1983, p. 138 ). Another example
from PARAGRAM is sentence (52) which is processed as if it were progressive tense



13 4 Connectionist Natural Language Processing

Table IV . Ungrammatical sentences tested with large target
grammar

Sentence form
Avg. strength

(48) *John have should scheduled the meeting for Monday. 14.4

(49) *Has John schedule the meeting for Monday? 32.3

(50) *John is schedule the meeting for Monday. 9.5

(51) *John is is scheduling the meeting for Monday. 7.2

(52) *The boy did hitting Jack. 14.8

(53) *The meeting is been scheduled for Monday. 559.6

('The boy is hitting Jack'). When this sentence is presented to PARAGRAM, a

nonsensical parse structure is produced for this sentence as reported by Charniak

(1983, p. 137). In CDP it produced a structure like that of sentence (38), but, as we

saw in the medium grammar , there is not one clear choice for how the sentence should

appear if grammatical. Finally, sentence (53) produced a very strong response, but the

comparable grammatical sentence (16) produces an even stronger response . Sentences

like (53 ) are commonly misspoken forms of English.

4.4: Processing Lexically Ambiguous Sentences

ROBIE extends PARSIFAL to address issues of lexical ambiguity. ROBIE requires
additional rules and number agreement tests to handle these items properly. In the
deterministic approach, it is essential that lexical items be properly disambiguated to
permit processing to proceed without backtracking.

In another set of experiments with the medium grammar, the parser is tested for

this. Normal sentences are presented, except that selected words are coded ambigu-
ously (here, indicated by angle brackets ( ) around the word) to represent an
ambiguously stored word from the lexicon. Some of these sentences are shown in
Table V. The numbers again indicate the average strength for each sentence. In the
cases shown, the lexically ambiguous words are correctly interpreted and reasonable

structures result.

Table V. Lexically ambiguous sentences used in testing the
medium grammar

Sentence form

Deductive
avg. strength

Inductive
avg. strength

(54) They (can) fish . 4.5 2.6

(55) They can (fish). 172.2 4.9

(56) (Will) he go? 83.6 14.3

(57) Tom (will) hit Mary. 118.7 19.9

(58) Tom (hit)Mary . 39.0 2.5
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/ P\

fish

Figure 6. Parse of `They can(v) fish(np)'.

They

AUX

I
can

Figure 7. Parse of `They can(aux) fish(v)'.
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CDP utilizes syntactic context to resolve these ambiguities. Again, tote generaliza-
tion capability of the network automatically works to relate novel situations to its
training cases. For lexically ambiguous situations, some inputs may contain features
which confuse its identity as expected by the parser. The context provided by the
buffer and stack of the deterministic parser works well in aiding the resolution of many
types of lexical ambiguities. An important fact is that, as before, no additional rules or
mechanisms are required to provide this capability.

For example, sentence (54) presents can ambiguously as an auxiliary, modal and

main verb, while fish is presented uniquely as an NP. Can is processed as the main

verb of the sentence and resulted in the same structure as sentence (10) of Table I.
This is shown in Figure 6. Here, each word is presented unambiguously with can

coded as a verb and fish coded as an NP. The same structure results in each case, with
the average strength level much higher in the unambiguous case. Likewise, sentence
(55), by coding fish ambiguously as a verb/NP and coding can uniquely as an auxiliary

verb, produced the same structure as sentence (I1). This is the structure in Figure 7.
Sentence (56) contains the word will coded ambiguously as an NP and an

auxiliary, modal verb. In the context of the sentence, it is clearly being used as a modal
auxiliary and the parser treats it that way. A similar result is obtained for sentence

(57). In sentence (58), hit is coded to be ambiguous between an NP (as in playing
cards) and a verb. The network correctly identifies it as the main verb of the sentence.

In the cases shown , the lexically ambiguous words are disambiguated and reason-
able structures result. Note that the overall average strengths are lower than compar-

able grammatical sentences discussed , as expected . Also, deductive average strength is

higher than inductive average strength.
Additional sentences containing lexically ambiguous words are tested with the large

grammar . Some of these sentences are shown in Table VI. Ambiguously coded words

within the context of otherwise normal sentences are shown to be interpreted correctly

in this set of experiments . In the cases shown , the lexically ambiguous words are

correctly interpreted and reasonable structures result , although lower strengths are
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Table VI. Lexically ambiguous sentences tested with large target grammar

Sentence form Avg. strength

(59) (Will) John schedule the meeting for Monday? 5.0
(60) Tom (will) hit Mary. 29.8
(61) Tom (hit) mary. 13.6
(62) The (will) gave the money to Mary. 16.6
(63) They (can) fish(np). 20.6
(64) They can(aux) (fish). 2.9

again observed . As before, no additional rules or mechanisms are required to provide
this capability.

Sentence (59) contains the word will coded ambiguously as an NP and an
auxiliary, modal verb. In the context of the sentence, it is clearly being used as a modal
auxiliary and the parser treats it that way. A similar result is obtained for sentence
(60) which parses as (40 ). In sentence (61), hit is coded to be ambiguous between an
NP (as in playing cards) and a verb. The network correctly identifies it as the main
verb of the sentence as in sentence (39). Sentence (62) is constructed as for sentence
(41). Sentence (63) presents can ambiguously as an auxiliary, modal and main verb,
while fish is presented uniquely as an NP. Can is processed as the main verb of the
sentence and results in the same structure as sentence (42). Likewise, sentence (64),
which contains fish coded ambiguously as a verb/NP and can coded uniquely as an
auxiliary verb, produces the same structure as sentence (43). In the cases shown, the
results are very comparable to those of the medium grammar.

One final type of lexical ambiguity should be mentioned. In CDP, the word to is
always coded ambiguously as both a preposition (prep) and as the word that introduces
an infinitive (to-inf). For the word that, coding always represents it as a complemen-
tizer (comp), but often it should play the role of a determiner (det). Through training,
CDP is able properly to resolve the roles of these words according to context.
Examples showing how to is properly handled are sentences like (22) and (41), while
ones illustrating disambiguation of that are (33) and (34).

5. Discussion

With our architecture for connectionist deterministic parsing, the functionality of
symbolic deterministic parsing is demonstrated. Training becomes difficult as the
complexity of the grammar increases, but our data show that many of the advantages
of the connectionist approach can be realized by modifying a deterministic parser as
we have described. Likewise, many of the drawbacks of previous connectionist
attempts at NLP can be overcome, while addressing some of the deficiencies of
symbolic models. Thus, the marriage is a good one from our perspective.

While deductive training exhibits better performance than inductive training for all
experiments, there are tradeoffs in the two approaches. Deductive training-requires
rules as the basis for rule templates while inductive training requires a large amount of
data to be successful. Fortunately there is a middle ground which allows mixtures of
the two training strategies . Training can be performed using rule templates as well as
patterns based on sentence traces. In a recent set of experiments in which the two-
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types of training data are combined, the network is capable of generalizing in ways
similar to deductive learning, but also shows particularly good performance on the
specific cases reflected in the inductive data. This is further discussed in Faisal &
Kwasny (1990).

The potential for exploiting the notion of extensional programming is also good.
The dependency on inductive learning will be greatest in those domains which are
difficult to analyze. These are exactly the domains in which symbolic techniques break
down. We have begun to examine an approach to NLP based almost exclusively on
inductive training sequences (Kwasny & Faisal, 1989b). This looks promising, but is a
topic for further research.

6. Open Problems

Several open problems exist which need to be resolved before satisfactory NLP is
possible with neural networks. The most important of these relates to the issue of
overcoming the `finiteness' constraint on inputs. Methods need to be developed which
permit unbounded streams of input to be processed by a neural network. Our approach
is to apply the network iteratively in a manner identical to the rules in deterministic
parsing. The iteration is managed symbolically and external to the network itself. This
makes our solution far from completely satisfying. Furthermore, the action portion of
the rule is identical to that of symbolic deterministic parsers. Ideally, the actions
should be incorporated into what is learned in the network. Requiring an action as
output introduces a point of fragility just as symbolic systems lack robustness due to
the fragility of their individual symbols.

Finally, methods of representation need to be developed for unbounded structures
which correspond to the resultant structures of language processing. Pollack (1989) is
a step in that direction, but more work is required. Some ideas for how a more fully
connectionist parser based on deterministic parsing might be realized are contained in
Kwasny & Faisal (1989b). Language processing, it is suggested, may turn out to be
best viewed in its relation to more behaviorally-defined outputs. However, it is easy to
show that what is commonly viewed as syntax is undoubtedly an important component
of language processing and, therefore, should be investigated.

7. Summary

CDP implements a deterministic parser based on the rules from a deterministic
grammar. The result is a combined symbolic/subsymbolic system which exhibits
characteristics from several well-known extensions to the basic deterministic parser.
These extended properties come essentially for free due to the use of connectionism.
The grammar used in these experiments is derived, with minor modifications, from one
used by Marcus, but with much inspiration from Milne, Berwick and Charniak. Only
small modifications are required in the grammar to accommodate our particular
architecture in CDP.

Notes

1. There are several expressions of this idea in the literature. Several psycholinguistic studies attempt to

measure the reality of this notion, both from a use as well as an interpretation perspective. Chomsky is

selected as an important reference and one that illustrates a classic viewpoint.
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