
FG,P- Az? 5

Unifying Several Natural Language Systems

in a Connectionist Deterministic Parser
Stan C . Kwasny, Kansan A . Faisal , and William E. Ball

Center for Intelligent Computer Systems
Department of Computer Science

Washington University
St. Louis, Missouri 63130

ABSTRACT

Natural Language systems based on deterministic
parsing have demonstrated that Natural Language Process-
ing can be performed deterministically. Although Marcus
was first to propose this approach in his MIT doctoral work,
others have independently extended this notion to the task
of parsing ungrammatical sentences , resolving lexical ambi-
guities, and acquiring syntactic rules.

We have found it beneficial to combine these tasks
into one implementation which is partly symbolic and partly
sub-symbolic . The introduction of connectionism has pro-
ven crucial to the success of the endeavor . We have con-
structed a connectionist deterministic parser which
possesses capabilities comparable to each of these systems.
It combines the concepts and ideas from deterministic pars-
ing with the generalization and robustness of connectionist,
adaptive (neural) networks. A back propagation neural net-
work simulator is used in this work . The ultimate goal is to
produce a parser that is capable of acquiring some reason-
able facility with language without refusing those inputs that
are slightly different syntactically from the inputs it is
designed to process.

INTRODUCTION

The determinism hypothesis imposes important res-
trictions on Natural Language Processing (NLP). It pro-
poses that such processing need not depend in any funda-
mental way on backtracking . PARSIFAL (Marcus 1980)
was the first of a number of systems to demonstrate the
notion of deterministic parsing of Natural Language. These
ideas have been independently extended to the parsing of
ungrammatical sentences in PARAGRAM (Charniak 1983),
to the resolution of lexical ambiguities in ROBIE (Milne

1986), and to the learning of syntactic rules in LPARSIFAL
(Berwick 1985).

As Figure 1 illustrates , these systems share their com-
mon roots in deterministic parsing , but represent indepen-
dent solutions in specific problem areas. The integration of

their processing capabilities is a specific goal of our work

(Kwasny 1988). The system architecture of PARSIFAL has
been re-configured and the behavior of the rules and other
mechanisms from these systems are being simulated using a
neural network simulator . Learning in the network is
achieved through backward propagation (Werbos 1974;

Rumelhart et al. 1986) and a prototype implementation of
our Connectionist Deterministic Parser (CDP) has been con-

structed (Kwasny and Faisal 1989).

PARAGRAM LPARSIFAL ROBIE
(Mllns(B/rwlck,1985)(Chamlak,1983)

PARSIFAL
(Marcus, 1980)

Figure 1:
Deterministic Parsing Systems

In our prototype , a moderate-sized grammar

developed from PARSIFAL is used for training . Experi-
ments are conducted to determine the effectiveness of train-
ing and to investigate whether the connectionist network

generalizes property to ungrammatical and lexically ambi-
guous cases . In comparisons with the other deterministic
parsing systems , CDP performs favorably. Much of the per-
formance depends on the extent and nature of the training,
of course, but our results show that through proper training
a connectionist network can indeed exhibit the same
behavioral effect as the rules. Furthermore, once trained,
the network is efficient, both in terms of representation and

execution.

, 1986)

t The sponsors of the Center are Mcl) mdl Douglas Corporation and Southwestern Bell Telephone Company.

ARCHITECTURE OF CDP

CDP is composed of a connectionist network trained
using backward propagation from rule templates which are
derived from a deterministic grammar . Rule templates are
intermediate between symbolic rules and the training pat-
terns required by the network. Each rule template typically
represents a large number of patterns . They serve to relate
situations that occur during parsing with the action deemed
appropriate for that situation. Actions in CDP are per-
formed symbolically on traditional data structures which are
also maintained symbolically.

Deterministic ("Waltand -See") Parsing

Deterministic ("Wait-and-Sce") Parsers process
input sentences primarily left-to-right. Determinism is
accomplished by permitting a lookahead of up to three con-
stitue nts with a constituent buffer designated for that pur-
pose. To permit embedded structures , a stack is also part of
the architecture. This is illustrated in Figure 2. The absence
of backtracking is an important advantage in developing a
connectionist-based parser since structures , once built, need
never to be thrown away.

Buffer

Suck

Figure 2:
Wait-and-See Parsing

Rules are partitioned into rule sets and a single pro-
cessing step consists of selecting a rule that can fire from an
active rule set. Rule sets are usually associated with the
current (top-level) node of the structure being built
Conflicts are resolved from the static ordering (priority) of
rules within the rule set. Once selected , the rule is fired and
its action is performed. The action effects changes to the
stack and buffer. After a series of processing steps, a termi-
nation rule fires and processing is terminated . The final
structure is left on top of the stack.

The grammar used in CDP is capable of processing a
variety of sentence forms which end with a final punctuation
mark. Simple declarative sentences , yes-no questions,
imperative sentences , and passives are permitted by the

grammar. The model actually receives as input a canonical
representations of each word in the sentence in a form that
could be produced by a simple lexicon. Such a lexicon is
not part of the model in its present form.

System Organization

As Figure 3 illustrates, CDP is organized into a sym-
bolic component and a sub-symbolic component . The latter
component is implemented as a numeric simulation of an
adaptive neural network. The symbolic and numeric can-
ponents cooperate in a tightly coupled manner since there
are proven advantages to this type of organization
(Kitzmiller and Kowalik 1987). For CDP, the advantages
are performance and robustness.

Sub

Symbolic
Symboiic4-

input
Stream

Figure 3:
CDP System Organization

The symbolic component manages the input sentence
and the flow of constituents into the lookahead buffer, cod-
ing them as required for the input level of the network in the
sub-symbolic component. On the return side , it evaluates
the activations of the output units, decides which action to
perform, and performs that action , potentially modifying the
stack and buffer in the process.

The responsibility of the sub- symbolic component,
therefore, is to examine the contents of the buffer and stack
and yield a preference for a specific action. These prefer-

ences are garnered from many iterations of back-
propagation learning with instances of the rule templates.
Learning itself occurs off-line and is a time-consuming pro-
cess, but once learned the performance of the system is
excellent. Computations now only in one direction in the
network. The feed-forward multiplication of weights and
computation of activation levels for individual units produce
the pattern of activation on the output level. Activation of
output units is interpreted in a winner-take-all manner, with
the highest activated unit determining the action to be taken.

Coded Actions

Output

Hidden

Input

Coded Stack & Buffer

Figure 4:
Sub-Symbolic Component

In the prototype , the network has a three-layer archi-
tecture as illustrated in Figure 4, with 37 input units , 20 hid-
den units, and 20 output units . The input layer consists of
four pools of input units . The first three pools represent the
buffer, with each containing the features of a buffer item,
and the fourth pool represents the top of the stack including
the current node of due parse tree . One hidden layer is used
in all of our experiments . The output layer represents the 20
actions that can be performed on each iteration of process-
ing.

GRAMMAR LEARNING IN CDP

There are two distinct approaches to training a net-
work to parse sentences . Each of these training strategies
result in a slightly different version of CDP. The difference
lies in the nature of the training patterns presented. One
approach uses rule templates , training patterns derived from
the rules . This type of learning is deductive in the sense that
a very general form of each rule is learned from which the
parser must derive actions specific to individual cases. The
second approach uses training data derived from sentence
processing traces. This form of training is inductive in the
sense that the parser must arrive at general patterns of per-
formance iron the specific instances presented.

Deductive Learning

Rule templates are the basis for deductive training.
Patter instances of the rule templates are presented repeat-
edly and the weights in the network are adjusted at each
step. This continues until the network converges and out-
puts are produced for each rule which are below a threshold
of error tolerance . When this occurs, the parser that uses
the network should correctly parse exactly those sentences
that the original rules can parse. In this way, the rules of
PARSIFAL can be simulated in a deductively-trained CDP.

In the canonical input format of a rule template, word
forms are represented as a list of syntactic features. The set
of possible features is chosen as necessitated by the gram-
mar being coded. In general , each word form is represented
by a feature vector in which one or more features are
present (indicated by +1 in the feature vector). All other
features are either OFF(-1) or DO NOT CARE (?). A rule
template is instantiated to form a training pattern by ran-
domly changing ? to either +1 or -1. It is then applied to
the input level of the network.

Grammar rules are coded into rule templates by con-
catenating the feature vectors of the component constituents
from the stack and buffer . Each grammar rule takes the fol-
lowing form:

(<Stack> <1st Item <2nd Item> <3rd Item> -+
Action)

For example, a rule for Yes/No questions would be written:

(<Snode ><"have"><NP><VERB, -en>-►
Switch 1st and 2nd items)

while a rule for imperative sentences would be written:

(< S node > < "have " > < NP > < VERB, inf > -+
Insert YOU)

By replacing each constituent with its coding, a rule tem-
plate is created. Each rule in the grammar gives rise to one
or more rule templates . In the two rules above, rule tem-
plates are created with a ? value for many of the specific
verb features of the initial form "have" in each rule , but are
carefully coded for the differences in the third buffer posi-
tion where the primary differences he. Because different
actions are required , these are also coded to have different
teaching values during training. Organization of the tem-
plates into packets or some other form of grouping is not
necessary here as in the deterministic grammar.

The probability of a ? becoming a +1 or -1 is equal
and set at 0.5. All weights in the network are initialized to
random values between -0.3 and +0.3 . After the presenta-
tion of each pattern, an error signal is derived by comparing
activation on the output layer (the network's prediction)
with the desired output patter (the rule template 's action).
That error signal is back-propagated through all the connec-
tions and the weights adjusted before presenting the next

pattern.

A sentence is parsed by iteratively presenting the net-
work with coded inputs and performing the action specified
by the network. Each sentence receives a score represent-
ing the overall average strength of responses during pro-
cessing. The score for each processing step is computed as

the reciprocal of the error for that step . The error is com-
puted as the Euclidean distance between the actual output
and an idealized output consisting of a -1 value for every
output unit except the winning unit which has a +1 value.
The errors for each step are summed and averaged over the
number of steps. The average strength is the reciprocal of
the average error per step.

Inductive Learning

A second type of training for the network uses train-
ing patterns derived from traces of the situations encoun-
tered and actions performed during the processing of actual
sentences . This processing is guided by application of the
rules of a deterministic grammar as before. PARSIFAL is
simulated in this way and the task of the inductively-trained
CDP parallels that of LPARSIFAL.

In LPARSIFAL the object is to learn (symbolic)
grammar rules from examples of correct sentences. The
success of this task is gauged by directly comparing the
rules learned to those of PARSIFAL. LPARSIFAL
succeeds in learning approximately 70% of those rules from
a carefully constructed set of training sentences.

In CDP inductive training requires the network to
exhibit the correct rule-following behavior after being
trained with a sample of sentence traces . Training occurs
through the mechanism of backward propagation which is a
general purpose network training algorithm . No symbolic
rules are learned as such , but the behavioral characteristics
of the rules are captured within the parameters of the net-
work . Furthermore, the behavior is guaranteed to approxi-
mate the behavior required in the sample training sentences
as closely as desired , depending on the convergence rate
and the quantity of training employed.

CDP, therefore , can exhibit different properties
depending on the patterns used in training . Inductive learn-
ing is a much more tedious process since much more data is
required as compared to that required for deductive training.
Also, the range of sentence types handled depends greatly
on the completeness of the examples presented . Deductive
training imposes an ordering on the training patterns that
assures a completeness which is difficult to achieve with
inductive training, but inductive training patterns reflect the
frequency of rule occurrences seen in actual sentence pro-
cessing.

SIMULATION OF NLP SYSTEMS

Each of the three NLP systems mentioned provide
improvements and enhancements to the PARSIFAL system.
Since these improvements are complementary, it is desir-
able to combine their features into one system . Although

we have chosen to pursue this goal through connectionism,
could this be accomplished symbolically?

Attempting to combine these systems symbolically
would require that several issues be addressed.
PARAGRAM handles ungrammatical sentences by chang-
ing some of the rules and introducing a scoring mechanism.
Since ROBIE adds rules for dealing with lexical ambiguity,
these rules would have to be examined and made compati-
ble with the scoring facility of PARAGRAM . Furthermore,
rule-learning in LPARSIFAL would have to be extended to
give it the capability of learning these new rules even
though, at present , it is only capable of learning a percen-
tage of the rules in PARSIFAL. Thus , for the symbolic
approach to yield one integrated system the combinatorial
interplay among the parts must be addressed. While not
impossible , the building of such a system would certainly
involve solving some difficult problems.

The connectionist approach has several important
advantages in unifying these four systems. Much of the
capability is derived directly from properties of connection-
ist networks and therefore no special mechanisms are
required for each . Learning is a fundamental feature of the
approach . Ungrammatical sentences , comparable to those
of PARAGRAM, are processed as a consequence of the
generalization properties of the network. These same pro-
perties also aid in the disambiguation of lexical items.

Grammatical Sentences

Experimentation with grammatical sentences demon-
strates the ability of CDP to perform as PARSIFAL. Thus,
the claim that CDP simulates both PARSIFAL and LPAR-

SIFAL is substantiated. For example, the following gram-
matical sentences were processed by the system just as the
rule-based grammar would process them.

(1) John should have scheduled the meeting. 283.3
(2) Has John scheduled the meeting? 132.2

(3) The boy did hit Jack. 2982
(4) Schedule the meeting. 236.2
(5) Tom hit(v) Mary. 485.0
(6) Tom will(aux) hit(v) Mary. 547.5
(7) They can(v) fish(np). 485.0

(8) They can(aux) fish(v). 5982

The numbers indicate the average strength computed for
each sentence, but should be used for comparison purposes
only. Each example shows a high average strength value,
indicating that the rules used in training have been learned.

Ungrammatical Sentences

PARAGRAM extends PARSIFAL to handle ungram-
matical sentences. This is accomplished by considering all
rules in parallel and scoring each test performed on the left-
hand side of a rule according to predefined weights. The
rule with the best score fires. In this way, processing will

always have some rule to fire. Reported experimentation
with PARAGRAM shows this to be an effective method of

stretching the inherent capabilities of the grammar.

For CDP, an important test of its generalization capa-

bilities is its response to novel sentences. This is strictly
dependent upon its experience since no relaxation rules
(Kwasny and Sondheimer 1981), meta-rules (Weischedel

and Sondheimer 1983), or other special mechanisms were
added to the original . grammar to handle such cases. This
experiment consists of testing a few ungrammatical sen-
tences that are close to the training data and within the
scope of our encoding. For example the following ungram-
matical sentences result in reasonable structures.

(9) *John have should scheduled the meeting. 25.1
(10) *Has John schedule the meeting? 38.1
(11) *John is schedule the meeting. 4.7
(12) *The boy did hitting Jack. 26.6

Sentence (9), for example, results in the structure shown in
Figure 5. The numbers again indicate the average strength
for each sentence. In our view , this is a reasonable structure
for this sentence . The only observable effect is that overall
average strength is lower for ungrammatical sentences when
compared to similar grammatical ones.

yP\

MVB NNN

scheduled the meeting

Figure 5:
Parse of "*John have should scheduled the meeting."

Selected ungrammatical sentences are properly pro-
cessed as a direct result of the generalization properties of
learning. When presented an ungrammatical sentence, that
is one for which the rules of the grammar would fail to find
a parse , the network automatically relates the situations aris-
ing during parsing to similar situations on which it has been
trained. The tendency is for it to select the closest situation.

Very often , this generates precisely the response required to
relate the deviant form to one that is not.

Lexically Ambiguous Sentences

ROBIE extends PARSIFAL to address issues of lexi-
cal ambiguity . Many of these require additional rules and
lexical features in ROBIE to properly handle. In the deter-

ministic approach , it is important that lexical items be prop-
erly disambiguated to permit processing to proceed without
backtracking.

Thus, in another set of experiments with CDP. the
parser was tested for this. Normal sentences were
presented, except that selected words were coded ambigu-
ously (here indicated by angle brackets < > around the
word) to represent an ambiguously stored word from the
lexicon. Consider the following sentences:

(13) Tom <will> hit Mary. 118.7
(14) Tom <hit> Mary. 39.0
(15) They <can> fish(np). 4.5
(16) They can(aux) <fish>. 172.2

The numbers again indicate the average strength for each

sentence. In the cases shown , the lexically ambiguous
words were correctly interpreted and reasonable structures
resulted. For example, sentence (15) resulted in the same
structure as sentence (7) produced. This is shown in Figure
6. Likewise, sentence (16) produced the same structure as
sentence (8). This is the structure in Figure 7. We note
again that the overall average strengths were lower than
comparable grammatical sentences discussed, as expected.

They

yP\

AUX MV

I

B it \

in /ash

Figure 6:
Parse of "They can(v) fish(np)"

CDP utilizes syntactic context to resolve similar
ambiguities. Again, the generalization capability of the net-
work automatically works to relate novel situations to its
training cases. For lexically ambiguous situations, some
inputs may contain features which confuse its identity as
expected by the parser. The context provided by the buffer
and stack of the deterministic parser has proven to be

thoughtful discussions and comments concerning this work.

Figure 7:
Parse of "They can(aux) fish(v)"

sufficient to aid in resolving most ambiguities . An impor-
tant fact is that no additional rules or mechanism is required
to provide this capability.

DISCUSSION

In its present stage of development , CDP clearly
encompasses many of the capabilities of PARSIFAL,
LPARSIFAL , PARAGRAM, and ROBIE . The extent to
which it measures up to each is under investigation (Faisal
1989), but in our prototype, the capability for each line of
research to continue in a unified fashion has been demon-
strated and verified. We have argued that it would be very
difficult to combine these systems symbolically.

The advantages of this effort are clear. The resulting
system possesses many more types of language coverage
than any of the four systems individually . To achieve this
symbolically would require the extension of the mechan-
isms in each of t e systems to include the other. It is
difficult to see how this would be done. Many of the pro-
cessing capabilities of CDP are derived from the introduc-
tion of connectionism and from the learning technique
employed. CDP critically depends on the network , how it is

trained, and the sophistication of the grammar on which
training is based. No special mechanisms are required for
ungrammaticality and lexical ambiguity . If the network
generalizes well, these capabilities follow naturally.

In the prototype, the system has been limited, in a
sense, by only training with a moderate-sized grammar. In
doing so, the capabilities that CDP possesses have been
established. As CDP is trained using more examples from a
larger grammar, its capabilities are expected to improve and
equal or surpass those of the four systems . This is our goal
in current and future work.

ACKNOWLEDGMENTS

We are grateful to many people for helping in this
effort. The authors express gratitude to Georg Dorffner,
David Harker, Dan Kimura, Ron Loui, and John Merrill for

REFERENCES

Berwick , R.C. 1985. The Acquisition of Syntactic

Knowledge . MIT Press , Cambridge, MA.

Chamiak , E. 1983. "A Parser with Something for Every-

one." In Parsing Natural Language , M. King, ed.

Academic Press , New York, NY, 117-150.

Faisal, K.A. 1989 . CDP: Connectionist Deterministic

Parser, A Dissertation Proposal " Technical Report WUCS-
89-33. Department of Computer Science, Washington
University, St. Louis, Mo. (Aug.).

Kitzmiller, C.T., and J .S. Kowalik . 1987. "Coupling Sym-
bolic and Numeric Computing in Knowledge -Based Sys-

tems." Al Magazine 8, no. 2 , 85-90.

Kwasny, S.C. and K.A. Faisal . 1989. "Competition and
Learning in a Connectionist Deterministic Parser." In
Proceedings of the 11th Annual Conference of The Cogni-

tive Science Society, (Ann Arbor, MI, Aug . 16-19).

Lawrence Erlbaum Associates, Hillsdale , NJ, 690-697.

Kwasny , S.C. and N.K. Sondheimer . 1981. "Relaxation
Techniques for Parsing Ill-Formed Input " American Jour-

nal of Computational Linguistics 7, no. 2, 99-108.

Kwasny, S.C. 1988. "A Parallel Distributed Approach to
Parsing Natural Language Deterministically ." Technical

Report WUCS -88-21 . Department of Computer Science,
Washington University , SL Louis , Mo. (Aug.).

Marcus, M. P. 1980 . A Theory of Syntactic Recognition for

Natural Language . MIT Press . Cambridge, MA.

Milne, R. 1986. "Resolving Lexical Ambiguity in a Deter-
ministic Parser." Computational Linguistics 12, no. 1 (Jan-

Mar): 1-12.

Rumelhart , D. E., G. Hinton, and RJ . Williams. 1986.
"Learning Internal Representations by Error Propagation."
In Parallel Distributed Processing , D.E. Rumelhart and J.L.

McClelland , MIT Press , Cambridge , MA, 318-364.

Weischedel , R.M. and N.K. Sondheimer . 1983. "Meta-
Rules as a Basis for Processing Ill-Formed Input" Ameri-

can Journal of Computational Linguistics 9, no. 3-4, 161-

177.

Werbos, P. 1974. "Beyond Regression : New Tools for
Prediction and Analysis in Behavioral Science." PhD
Thesis. Harvard University, Cambridge, Ma.

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

