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Abstract—Rule-based expert systems either develop out of the direct involvement of a concerned
expert or through the enormous efforts of intermediaries called knowledge engineers. In either case,
knowledge engineering tools are inadequate in many ways to support the complex problem of expert
system building. This article describes a set of experiments with adaptive neural networks which
explore two types of learning, deductive and inductive, in the context of a rule-based, deterministic
parser of Natural Language. Rule-based processing of Language is an important and complex domain.
Experiences gained in this domain generalize to other rule-based domains. We report on those ex-
periences and draw some general conclusions that are relevant to knowledge engineering activities

and maintenance of rule-based systems.

1. INTRODUCTION

IN THE FIELD of Artificial Intelligence (Al), one of the
primary goals is to build intelligent systems. Since the
1970s, many such systems have been most easily built
symbolically as rule-based systems. In many applica-
tion areas, the most popular of these are known as
rule-based expert systems. These systems have become
ubiquitous in their application to everything from
medical diagnosis to oil exploration to stock market
trading. Typically, these systems develop from con-
sultations with recognized experts who provide knowl-
edge and experience during the process of rule devel-
opment and debugging.

Most expert systems use rules in some capacity.

Usually, the rule formalism becomes the de facto “pro-

gramming language” for the application and the rules
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are executed like statements in the langnage. Building
such systems is no trivial task, often occupying the full-
time efforts of dozens of people. Much of the effort is
spent talking with human experts, gaining their per-
spective in an application domain, and teasing out the
salient information that allows the expert to perform
his task with a high degree of skill. Once some knowl-
edge is acquired, it becomes the basis for system or-
ganization and rules that mimic the expertise. However,
acquisition of such knowledge is an ongoing concern
even as refinements are made during maintenance.

The task is not a simple one. Even with the most
cooperative experts and best tools, rules are often dif-
ficult to formulate. Ad hoc mechanisms that relate
premise to conclusion have been invented to capture
some of the vagueness and uncertainty of the relation-
ships articulated by the expert. Certainty factors, for
example, were invented for this purpose. Extensive ev-
idence showing the difficulty of knowledge acquisition
can be found in a recent special issue of SIGART
(Westphal & McGraw, 1989). The task of Natural
Language Understanding, in fact, has been perceived
as a task of knowledge engineering (Shapiro & Neal,
1982). '

Once formulated, rules are difficult to debug and
maintain. In XSEL/XCON, for example, it is reported
(Barker & O’Connor, 1989) that 40% of the rules re-
quire changes each year to adapt to new products and
for other reasons. Systems like TEIRESIAS (Davis,
1982) have been specifically designed to aid in the cri-
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tiquing and reformulation of rule-based systems by the
experts themselves. However, the expert is still required
to operate at the level of rules, which may be very un-
natural in many domains. Rules, no matter how so-
phisticated, do not always make the best programming
language.

Even with better tools, once performance reaches a
certain point it may prove difficult to achieve an im-
proved level of performance, Upon analysis, some of
the difficulty may be attributable to design decisions
made early in the construction of the system which
lose their validity as the system evolves. Such problems
often require changes to the basic design and complete
retooling of the system.

Traditionally, rules also play an important role in
the processing of Natural Language. In fact, the com-
parison between rule-based expert systems and rule-
based Natural Language systems is close indeed, es-
pecially in examining some of the difficulties encoun-
tered. Many linguistic rule systems have been proposed,
although the rules in these systems may not always
appear explicitly as in rule-based expert systems. Sym-
bolic rules tend to be an important vehicle of specifi-
cation for the symbolic processing requirements of both
types of systems.

The goal for expert systems is to symbolically de-
scribe a domain in such a manner that relevant deci-
sionmaking can occur and that a computer system can
perform at the level of expert in this regard. But, is this
always a realistic goal? While progress in Natural Lan-
guage Processing (NLP), for example, continues to be
made, why does this continue to be only a partially
solved problem? Or, more specifically, why is there no
operationally complete set of symbolic rules for English
(i.e., no set of rules that perfectly describes all under-
standable English utterances)? Certainly, it is neither
for lack of experts nor lack of effert. Perhaps, if we
agree with Winograd and Flores (1987, p. 107), the
answer is that “. . . computers cannot understand
language.” We do not believe computer systems are so
impaired.

The problems raised for rule-based expert systems
as well as those mentioned for rule-based NLP could
be attacked through learning, Learning would seem to
be a solution, but traditional learning approaches too
often require even deeper insights and understanding
of the problem domain than the expert himself may
possess, While strictly symbolic learning may be pos-
sible, such systems typically need to invent new sym-
bols to extend their capabilities symbolically and this
imposes limitations on the approach.

If learning could be conducted in a sufficiently flex-
ible manner, a trainable system could be taught the
rules articulated by the expert and then be led to adapt
to those cases where the rules fail. In a similar fashion,
the competence rules of a grammar can be taught in
concert with the performance examples of NLP. This
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distinction between easily articulated rules and the
more difficult ones is analogous to the distinction be-
tween textbook and experiential learning. The new in-
tern, for example, is filled with book learning, but lacks
the wisdom and knowledge of the domain which only
comes through experience. Connectionist (neural) net-
works hold promise for providing such a flexible learn-
ing scheme. &

This article presents results from experimentation
with a connectionist parsing system. The system is
simply viewed as an example of a complex rule-based
system. Conclusions reached in these experiments,
therefore, have consequences for many other types of
rule-based systems,

2. RULE-BASED CONNECTIONIST PARSING

Natural Language processing is both symbolic and
subsymbolic. It is symbolic in the role symbols play in
writing systems and in the chunking of concepts, while
it is subsymbolic because of the fuzziness of concepts,
and the apparent high degree of parallelism in the ac-
tivity. In building parsers, the subsymbolic aspect of
language is usually lost, although there have been at-
tempits to construct parsers that are totally subsymbolic
(see Fanty, 1985; Selman & Hirst, 1985; Waltz & Pol-
lack, 1985).

Rules vsually play a sacred role in parsing systems
and, as mentioned earlier, are often executed as if fol-

-lowing instructions in a program. Whether we are only

interested in building robust expert systems, or are in-
terested in modeling human expertise, this method is
incorrect. Rules should be permitted to play an advisory
role only—that is, for guidance in typical situations
and not as prescriptions for precise processing.

In the case of English, if a complete set of rules for
all meaningful English forms existed, then it might be
satisfactory to rely on a rule-based approach. But no
such set of rules exists, nor does it seem desirable or
even possible to construct such a set. Any rule-based
system that is based literally on rules tends to be brittle
since there is no direct way to process inputs that are
not anticipated to some extent. Furthermore, the ac-
quisition of new rules often requires tedious retuning
of existing rules. The only solution 1o these problems
in a practical and realistic manner is through learning,

We have developed a connectionist deterministic
parsing system called CDP which offers solutions to
these problems (Kwasny & Faisal, 1989). Training can
be conducted either from rules or from examples of
processing, The resultant network is then tested on a
variety of novel sentence patterns and its generalization
capabilities studied. .

A set of experiments are presented which support
the claim that Natural Language can be syntactically
processed in a robust manner using a connectionist
deterministic parser. The model is trained based on a
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set of deterministic grammar rules and tested with sen-
tences which are grammatical and ones that are not.
Tests are also conducted with sentences containing
lexically ambiguous items.

2.1. Deterministic Parsing

For a complete understanding of the motivation and
architecture of CDP, it is necessary to describe the work
on which it is based. For a readable description of
deterministic, “wait-and-see” parsing, see Winston
{1984), or for a more thorough discussion, see Marcus
(1980).

The determinism hypothesis restricts Natural Lan-
guage Processing to a deterministic mechanism. It states
that

Natural Language can be parsed by a mechanism that op-
erates ‘strictly deterministically’ in that it does not simulate
a nondeterministic machine . . . (Marcus, 1980, p. 11)

It follows from this hypothesis that NLP need not de-
pend on backtracking, nor are any partial structures
produced during parsing which fail to become part of
the final structure. This is equivalent to prohibiting
chains of reasoning in a rule-based expert system which
ultimately do not contribute to the final answer. Ob-
viously, processing is restricted in a major way under
this assumption.

PARSIFAL (Marcus, 1980) is a demonstration of a
a deterministic, rule-based parser of Natural Language.
Extensions to this system have been proposed for
processing ungrammatical sentences [PARAGRAM
(Charniak, 1983)], for resolving lexical ambiguities
[ROBIE (Milne, 1986)], and for acquiring syntactic
rules from examples [LPARSIFAL (Berwick, 1985)].

We have found it beneficial to combine these four
tasks into one implementation which is partly symbolic
and partly connectionist. The connectionist approach
has particular advantageous in unifying these four sys-
tems (Kwasny, Faisal, & Ball, in press). The system
architecture of PARSIFAL has been reconfigured and
the behavior of the rules and other mechanisms from
these systems are being simulated using a neural net-
work simulator. Learning in the network is achieved
through backward propagation discovered indepen-
dently by Werbos {1974) and Rumelhart, Hinton, and
Williams (1986).

As illustrated in Figure 1, the primary components
of a deterministic parser are a buffer for lookahead in
the sentence, a stack for processing embedded struc-
tures, and a collection of rules for controlling the
building and movement of constituents of the sentence
being processed. Processing occurs essentially left-to-
right. The absence of backtracking is an important ad-
vantage in developing a connectionist-based parser
since structures, once built, are never discarded.
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Grammar
Rule
Control

Stack
FIGURE 1. Deterministic Parsing in Schematic Form.

Rules are partitioned into rule sets. A standard rec-
ognize-act cycle is used to achieve a parse. A consequent
of a rule may be the activation or deactivation of a
rule set thereby providing a simple conflict resolution
strategy. Conflicts within rule sets are resolved from
the static ordering (i.e., numeric priority) of the rules.
Actions can effect changes to both the stack and the
buffer. As buffer positions are vacated at the far end,
new sentence components flow in sequentially. If a
successful parse is found, a termination rule will fire
leaving the final structure on top of the stack.

2.2. Connectionist Deterministic Parsing

CDP provides a setting for experimentation with a va-
riety of grammars and network designs. It combines
the basic mechanism of deterministic parsing with an
adaptive, feed-forward neural network to enable the
generalization and robustness of connectionism to be
evaluated in this domain. A backpropagation neural
network simulator, which features a logistic function
that computes values in the range of —1 to +1, is being
used in this work. The ultimate goal is to construct a

“mechanism capable of learning to deal syntactically

with language in a robust manner.

As Gallant {1988) points out, there are important
advantages to constructing rule-based systems using
neural networks. Qur focus is on building a connec-
tionist parser, but with more general issues in mind.
How successfully can a connectionist parser be con-
structed and what are the advantages? Success clearly
hinges on the careful selection of training sequences.
Our experiments have examined two different ap-
proaches and compared them (Faisal & Kwasny, in
press).

The “deductive” strategy uses rule “templates™ de-
rived from the rules of a deterministic grammar. It is
deductive in the sense that it is based on rules that are
general (in the sense that they must be applicable in a
wide variety of processing situations), but specific sen-
tence forms must be processed. The “inductive” strat-
egy derives its training sequence from coded examples
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of sentence processing. It is inductive in the sense that
it is based on specific sentence examples, although a
potentially wider variety of sentence forms must be
processed. The goal of both deductive and inductive
learning is to produce a network capable of mimicking
the rules or sentences on which its training is based
and to do so in a way that generalizes to many addi-
tional cases. Once initial learning has been accom-
plished, simulation experiments can be performed to
examine the generalization capabilities of the resulting
networks.

In our implementation, a moderate-sized grammar
developed from PARSIFAL is used for training, The
entire set of grammar rules is contained in Appendix
A. The grammar used in CDP is capable of processing
a variety of sentence forms which end with a final
punctuation mark. Simple declarative sentences, yes—
no questions, imperative sentences, and passives are
permitied by the grammar. The model actually receives
as input a canonical representation of each word in
the sentence in a form that could be produced by a
simple lexicon. Such a lexicon is not part of the model
in its present form,

Experiments are conducted to determine the effec-
tiveness of training and to investigate whether the con-
nectionist network generalizes properly to ungram-
matical and lexically ambiguous cases. In comparison
to the other deterministic parsing systems, CDP per-
forms favorably. Virtually all of our examples have
been drawn from previous work. Much of the perfor-
mance depends on the extent and nature of the training,
of course, but our results show that through proper
training a connectionist network can indeed exhibit
the same behavioral effect as the rules. Furthermore,
once trained, the network is efficient, both in terms of
representation and execution.

Deductive training generally performs well on all
generalization tasks and outperforms inductive training
by scoring generally higher on all experiments. Reasons
for this include the specificity of the inductive training
data as well as the lack of a large amount of training
data in the inductive case required to provide sufficient
variety.

3. LEARNING A RULE-BASED GRAMMAR

A deterministic parser applies rules to a stack and buffer
of constituents to generate and perform actions on
those structures. One of its primary features, as men-
tioned eartier, is that it does not backtrack, but proceeds
forward in its processing never building structures
which are later discarded. ]

Training of CDP proceeds by presenting patterns to
the network and teaching it to respond with an appro-
priate action using backpropagation. The input patterns
represent encodings of the buffer positions and the top
of the stack from the deterministic parser. The output
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of the network contains a series of units representing
actions to be performed during processing and judged
in a winner-take-all fashion. Network convergence is
observed once the network can achieve a perfect score
on the training patterns themselves and the error mea-
sure has decreased to an acceptable level (set as a pa-
rameter). All weights in the network are initialized to
random values between —0.3 and +0.3, Once the net-
work is trained, the weights are saved so that various
experiments can be performed.

A sentence is parsed by iteratively presenting the
network with coded inputs and performing the action
specified by the network, Fach sentence receives a score
representing the average strength of responses during
processing. The closer the sentence matches the training
patterns, the lower the error and the greater the
strength. Strengths are used for comparison purposes
ontly.

Strengths are computed as the reciprocal of the error.
The strength for each individual step is simply the re-
ciprocal of the error for that step. The step error is
computed as the Euclidean distance between the actual
output and an idealized output consisting of a —1 value
for every output unit except the winning unit which
has a +1 value. The errors for each step are summed
and averaged over the number of steps. The average
strength is the reciprocal of the average error per step.

As mentioned earlier, there are two distinct ap-
proaches 1o training a network to parse sentences. Each
of these training strategies results in a slightly different
version of CDP. The differences in the derivation of
the two types of training patterns are illustrated in Fig-
ure 2. Deductive training begins with deterministic
grammar rules which are coded into rule templates,
one rule template representing one grammar rule. In-
stantiation of a rule template leads to a training pattern
which is presented during learning. Coding and in-
stantiation are discussed below. Inductive training is
based on traces of sentence processing itself. The coded
training patterns derived in this way have in some sense
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FIGURE 2. Extraction of Deductive and Incluctive Training Pat-
terns.
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already been instantiated and, therefore, are suitable
for learning with no further translation.

3.1. Deductive Learning

Each grammar rule is coded as a training template
which is a list of feature values, but templates are not
grouped into rule packets as in PARSIFAL. Each con-
stituent in the rule is represented by an ordered feature
vector of +1 (on), —1 (off), or 7 (do not care). Instan-
tiation of the vector occurs by randomly changing ? to
+1 or —1. Each template, therefore, can be instantiated
into many patterns making each epach of training
slightly different. During training, the network learns
the inputs which are highly correlated with expected
outputs and those that are not. Training is arranged so
that ? values are uncorrelated with the outputs from
those training patterns.

Each rule template containing 7 7's can generate up
to 2" unigue training cases. Some rule templates have
up to 30 #s which means they represent approximately
10° training cases. It is obviously impossible to test the
performance of all these cases, so a zero is substituted
for each 7 in the rule template to provide testing pat-
terns. While in actual processing a zero activation level
for a feature will never be encountered, zero is a good
test since it represents the mean of the range of values
seen during training.

Grammar rules are coded into rule templates by
concatenating the feature vectors of the component
constituents from the stack and buffer. Each grammar
rule takes the following form:

{(Stack}{1st Item»{2nd Ftem) (3rd Item} >
Action}

For example, a rule for Yes/No questions would be
written:

{{S node){*have’(NPY(VERB, —en) —
Switch 1st and 2nd items)}

while a rule for imperative sentences would be written:

{(S node){“have” y{NPY(VERB, inf ) -
Insert YOU}
By replacing each constituent with its coding, a rule

template is created. In the two rules above, rule tem-
plates are created with a ? value for many of the specific

-verb features of the initial form *have” in each rule,

but are carefully coded for the differences in the third
buffer position where the primary differences lie. Be-
cause different actions are required, these are also coded

-to have different teaching values during training,
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Appendix A contains the grammar rules used as a
basis for all deductive training experiments in this
study. Our rules were derived from the grammar con-
tained in Appendix C of Marcus (1980) which includes
those rules specifically discussed in building a case for
deterministic parsing. They can be taken as represen-
tative of the mechanisms involved. To assure good
performance by the network, training has ranged from
50,000 to 200,000 presentations cycling through train-
ing cases generated from the rule templates. Once
training is complete, the parser that uses the network
correctly parses those sentences that the original rules
could parse.

3.2. Inductive Learning

Inductive training depends on training patterns derived
from traces of processing of actual sentences. This pro-
cessing is guided by application of the rules of a deter-
ministic grammar as before. This form of training
requires that the network demonstrate the correct
rule-following behavior after training runs with a com-
paratively small sample of sentence traces. Although
no symbolic rules are learned, the behavior of the rules
is captured within the weights of the network. Fur-
thermore, the behavior is guaranteed to approximate
the behavior required in the sample training sentences
as closely as desired, depending on the convergence
rate and the quantity of training employed.

The primary difference between the two forms of
learning is seen if we consider the space of possible
patterns. With deductive training, that space is system-
atically presented during learning in such a way that
each major distinction to be made during processing
is represented in each epoch. Inductive training hap-
pens in a less systematic way with no guarantee of ap-
propriate representation of cases. Thus, deductive
training imposes an ordering on the training patterns
that assures a completeness which is difficult to achieve
with inductive training, but inductive training patterns
reflect the frequency of rule occurrences seen in pro-
cessing the actual samples of sentences.

A small set of positive sentence examples were traced
which resulted in 64 unique training patterns. These
were used for all inductive experiments in this study.

3.3. Architecture of CDP

As Figure 3 iltustrates, CDP is organized into a sym-
bolic component and a subsymbolic component. Ac-
tions in CDP are performed symbolically on traditional
data structures which are also maintained symbolicalty.
The subsymbolic component is implemented as a nu-
meric simulation of an adaptive neural network. The
symbolic and numeric components cooperate in a
tightly coupled manner since there are proven advan-
tages to this type of organization (Kitzmiller & Ko-
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FIGURE 3. CDP System Organization,

walik, 1987). For CDP, the advantages are performance
. and robustness.

It is the responsibility of the symbolic component
to handie the input sentence coding it for presentation
to the network, In the subsymbolic component, the
network produces a designation of an action to be per-
formed by producing an activation pattern across out-
put units. Activation of output units is interpreted in
a winner-take-all manner, with the highest activated
unit determining the action to be taken. Actions them-
selves are performed symbolically on conventional data
structures. The whole process is very efficient in time
and space, although learning itself occurs off-line and
is a tine-consuming process.

In the set of experiments described here, the network
has a three-layer architecture as illustrated in Figure 4,
with 35 input units, 20 hidden units, and 20 output
units. Each input pattern consists of three feature vec-
tors from the buffer items and one stack vector. Each
vector activates 14 input units in a pattern vector rep-
resenting a word or constituent of the sentence. The
stack vector activates seven units representing the cur-
rent node on the stack. In our simplified version of the
grammar, only two items are coded from the buffer
and thus 35 input units are sufficient. One hidden layer
has proven sufficient in all of these experiments. The
output layer represents the 20 possible actions that can
be performed on each iteration of processing,

What the model actually sees as input during sen-
tence processing is not the raw sentence but a canonical
representation of each word in the sentence in a form
that could be produced by a simple lexicon, although
such a lexicon is not part of the model in its present
form. Iteration over an input stream is performed by
moving unprocessed sentence forms into the buffer as
vacancies are created. Iteration ends when the buffer
becomes empty and a stop action is requested by the
network.

At this point, it is instructive to follow an example
with more details revealed as shown in Figure 5. When
a sentence form like

*John have should scheduled the meeting.
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appears in the input stream, the first three constituents
fill the buffer. Note that in reality this is an ungram-
matical sentence form. Later, it will be shown that CDP
can correctly produce the structure shown. The con-
tents of the three elements along with the contents of
the top of the stack are coded into a feature vector and
presented to the network producing a single action.
The action is executed potentially producing changes
to the buffer and stack. When processing stops, the
final structure can be seen on the top of the stack, just
as for PARSIFAL.

4. PERFORMANCE

CDP is capable of successfully processing a variety of
simple sentence forms such as simple declarative, pas-
sive, and imperative sentences as well as yes—no ques-
tions, For test and comparison between the inductive
and deductive CDPs, several sentences are coded that
would parse correctly by the rules of the deterministic
parser. Also, several mildly ungrammatical and lexical
ambiguous sentences are coded to determine if the net-
work generalizes in any useful way. The objective is to
test if syntactic context could aid in resolving such sit-
uations.

4.1. Parsing Grammatical Sentences

Experimentation with grammatical sentences dem-
onstrates the ability of CDP to perform as PARSIFAL.
Earlier we mentioned that convergence testing from
the rule templates is possible by changing each ? to a
zero value. Here we examine the performance of CDP
with actual sentences.

Grammatical sentences, by our definition, are those
which parse correctly in the rule-based grammar from
which we derived the training set. Table 1 shows several
examples of grammatical seéntences which are parsed
successfully along with their response strengths in both
deductive and inductive learning.

Strengths are computed as the reciprocatl of the av-
erage error per processing step for each sentence. The
error on each step is determined by taking the Euclid-
ean distance between the actual vector of output unit
activation values and an idealized vector with only the
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FIGURE 5. CDP System Overview.

winning unit turned on {one corner of the hypercube
in error space). Strengths reflect the certainty with
which actions for building structures are being selected,
but should be used for relative comparisons only.

Each example shows a relatively high average
strength value, indicating that the training data has
been learned well. Also, the deductive average strength
value is higher, in almost all cases, than the corre-
sponding inductive average strength. Although com-
parisons are difficult to make due to variations in the
number of unique training patterns and other factors,
the deductively trained network exhibits uniformly
more definitive decisions than the inductively trained
network,

Most of these sentences come from examples used
in the deterministic parsing systems described earlier.

Parse trees are developed which are identical with ones
produced by those systems. Sentences (8)-(11), which
contain ambiguous words, are presented to CDP un-
ambiguously, but the lexical choices are provided in
parentheses.

Capabilities described thus far have only duplicated
what is easily done symbolically. Of course, the feed-
forward network does support very fast decisionmaking
due to the feed-forward nature of the model. But what
other features does the model possess? Importantly,
how robust is the processing?

4.2. Lexical Ambiguity

ROBIE extends PARSIFAL to address issues of lexical
ambiguity. It requires additional rules and lexical fea-

TABLE 1
Grammatical Sentences Used in Testing

Deductive Inductive
Avg. Avg.

Sentence Form Strength Strength
(1) John should have scheduled the meeting. 2833 84.7
(2) John has scheduled the meeting for Monday. 179.3 842
(3) Has John scheduled the meeting? 132.2 64.4
(4) John is sceduling the meeting. 294.4 835
(5) The boy did hit Jack. 298.2 76.2
(6} Schedule the meeting. 236.2 67.8
(7) Mary is kissed. 2761 849
(8) Tom hit(v) Mary. 485.0 80.3
(9} Tom will{aux) hit(v) Mary. 547.5 787
(10} They can{v) fish(np). 485.0 80.3
(11) They canfaux) fish(v). 598.2 76.8
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tures to handle these properly, In the deterministic ap-
proach, it is essential that lexical items be properly dis-
ambiguated to permit processing to proceed without
backtracking.

In a set of experiments with CDP, the parser is tested
for this. Normal sentences are presented, except that
selected words were coded ambiguously (here indicated
by angle brackets { ) around the word) to represent
an ambiguously stored word from the lexicon. Selected
sentences are shown in Table 2. The numbers again
indicate the average strength for each sentence. In the
cases shown, the lexically ambiguous words are cor-
rectly interpreted and reasonable structures result.

CDP utilizes syntactic context to resolve these am-
biguities. Again, the generalization capability of the
network automatically works to relate novel situations
to its training cases. For lexically ambiguous situations,
some inputs may contain features which confuse its
identity as expected by the parser. The context provided
by the buffer and stack of the deterministic parser has
proven to be sufficient to aid in resolving many am-
biguities. An important fact is that, as before, no ad-
ditional rules or mechanisms are required to provide
this capability.

For example, sentence (12) presents can ambigu-
ously as an auxiliary modal, and main verb, while fish
is presented uniquely as an NP. Can is processed as
the main verb of the sentence and resulted in the same
structure as sentence (10) of Table 1. This is shown in
Figure 7. Here, each word is presented unambiguously
with can coded as a verb and fish coded as an NP. The
same structure results in each case, with the average
strength level much higher in the unambiguous case.
Likewise, sentence (13), by coding fish ambiguously as
a verb/NP and coding can uniquely as an auxiliary
verb, produced the same structure as sentence (11).
This is the structure in Figure 8.

Sentence (14) contains the word will coded ambig-
ucusly as an NP and an auxiliary modal verb. In the
context of the sentence, it is clearly used as a modal
auxiliary and the parser treats it that way. A similar
result is obtained for sentence (15). In sentence {16),
hit is coded to be ambiguous between an NP (as in
playing cards) and a verb. The network correctly iden-
tifies it as the main verb of the sentence.

TABLE 2
Lexically Ambiguous Sentences Used in Testing
Deductive Inductive
Avg. Avg.
Sentence Form Strength Strength
(12) They {can) fish. 45 26
(13) They can (fish}. 172.2 4.9
(14) {Will} he go? 83.6 14.3
(15) Tom {will} hit Mary. 1187 19.9
(18) Tom (hit) Mary. 39.0 25
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FIGURE 6. Parse of “*John have should scheduled the meet-
hg.!’

In the cases shown, the lexically ambiguous words
are disambiguated and reasonable structures resulted.
Note that the overall average strengths are lower than
comparable grammatical sentences discussed, as ex-
pected. Also, the deductive average strength value is
higher than inductivg average strength.

4.3. Parsing Ungrammatical Sentences

PARAGRAM extends PARSIFAL to handle ungram-
matical sentences. This is accomplished by considering
all rules in parallel and scoring each test performed on
the left-hand side of a rule according to predefined
weights. The rule with the best score fires. In this way,
processing always has some rule to fire. Reported ex-
perimentation with PARAGRAM shows this to be an
effective method for stretching the inherent capabilities
of the grammar.

CDP attempts to accomplish this through general-
ization. An important test of these capabilities is its
responses t0 novel sentences. These are strictly depen-
dent upon its training experiences since in deductive
training no relaxation rules (Kwasny & Sondheimer,
1983), meta-rules (Weischedel & Sondheimer, 1983),
or other special mechanisms are added to the original
grammar rules to handle ungrammatical cases, Like-
wise, in inductive training no ungrammatical sentences
are used. Experiments consist of testing a few ungram-
matical, but meaningful, sentences that are close to the
training data and within the scope of our encoding.
For our purposes, most of the examples are derived
from PARAGRAM and the parsing systems mentioned
earlier,

Selected ungrammatical sentences are properly pro-
cessed as a direct result of the generalization properties

P
N\ AUX MVB \ P
: N\

They I
can fish

FIGURE 7. Parse of “They can(v) fish{np).”
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TABLE 3
Ungrammatical Sentences Used in Testing
Deductive Inductive
Avg. Avg.
Sentence Form Strength Strength
(17} “John have should scheduled the meeting. 251 6.6
(18) *Has John schedule the meeting? 38.1 18.2
(19) *John is schedule the meeting. 47 4.9
(20) *The boy did hitting Jack. 26.6 7.5

of learning. When presented an ungrammatical sen-
tence, (i.e., one for which the rules of the grammar
would fail to find a parse), the network automatically
relates the situations arising during parsing to similar
situations on which it has been trained. The tendency
is for it to select the closest situation. Very often, this
generates precisely the response required to relate the
deviant form to one that is not.

In Table 3, selected ungrammatical sentences are
shown, These examples produce reasonable structures
when presented to our system. They are shown in the
table with their response strengths. Note that overall
average strength is lower for ungrammatical sentences
(in Table 3) when compared to similar grammatical
ones (in Table 1),

Sentence (17) is similar to sentence (1), except that
the word order has been changed in a simple way. Since
sequencing of items in the buffer is a seemingly crucial
part of the model, it was felt that this would test the
model significantly. Surprisingly, the structure pro-
duced is identical to that produced while parsing sen-
tence (1), but with lower strengths. The only difference
is that the two auxiliary verbs, have and should, are
reversed as shown in Figure 6.

Sentence (18) contains a disagreement between the
auxiliary Aas and the main verb schedule. This example
investigates whether predictions made while processing
the auxiliary can be only partially fulfilled and still lead
to a successful parse. In this case, the comparable
grammatical sentence (3) parses identically. Strengths
are again lower in both deductive and inductive cases.

Sentence (19) can be compared with sentence (4).
In the deductive case, a structure similar to that built
for sentence (4) is indeed constructed. However, in the

7.
/N \ ATX MvB

They can

fish
FIGURE 8. Parse of “They can(aux) fish{v)."

inductive case (marked with ) the network attempts
to process ‘is’ as if it were indicating the past tense,
Although this is incorrect for this sentence, it is not an
unreasonable choice. On closer examination, our in-
ductive training patterns seem to reflect passives more
thoroughly than competing alternatives. This is the
only case in which inductive exceeds deductive
strength. In this case, two dissimilar processing se-
quences are followed and, therefore, the two results are
not comparable.

Sentence (20) can be compared with sentence (5),
but there is not one clear choice in how the sentence
should appear if grammatical. The deductive-trained
network processes sentence (20) as sentence (5), while
the inductive result (marked with ) shows the sentence
processed as if it were progressive tense (*The boy is
hitting Jack’). In PARAGRAM, a nonsensical parse
structure is produced for sentence (20), as reported by
Charniak (1983).

4.4. Discussion of Results

Using syntax-based approaches to resolving ungram-
matical sentences has limitations as seen above due to
the ambiguities of such sentences. These problems are
well-known as discussed in Kwasny (1980). Impor-
tantly, CDP is easily influenced to make one choice or
another as a matter of competition. This is a funda-
mental property of CDP as argued elsewhere (Kwasny
& Faisal, 1989).

While deductive training exhibits better perfor-
mance than inductive training for all tasks, there are
trade-offs in the two approaches. Deductive training
requires rules as the basis for rule templates while in-
ductive training requires a large amount of data to be
successful.

Fortunately there is a middle ground which allows
mixtures of the two training strategies. Training can
be performed using rule templates as well as patterns
based on sentence traces. In a recent set of experiments
in which the two types of training data were combined,
the network was capable of generalizing in ways similar
to deductive learning, but also showed particularly good
performance on the specific cases reflected in the in-
ductive data,
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5. CONCLUSIONS

What does this mean for rule-based expert systems?
Where knowledge naturally exists in rule form and such
rules can be reliably stated, rule templates can be
formed which generate appropriate training cases.
However, where knowledge only exists in the form of
anecdotal cases, it can be expressed in the form of in-
ductive training patterns. As new cases are discovered
for which the rules do not apply, inductive data can
be easily constructed and the network retrained. Con-
trast this with the typical rule-based expert system in
which each new rule may require rethinking an entire
set of existing rules.

Our work has shown some of the trade-offs between
deductive and inductive learning. Both have a place in
the construction of a neural network designed to per-
form complex rule-based tasks such as parsing. De-
ductive learning can be compared to the idealized form
of learning one would typically get from textbooks,
while the analogy to inductive learning is that which
comes through practical experiences.

How well do these ideas for a connectionist parsing
system scale up to a larger grammar? The prospects
for successful scaling up are very good. A grammar
with more than 70 rules has been constructed and net-
work convergence has been observed. The rules rep-
resent some important new capabilities, including the
processing of embedded sentences and processing per-
formed by attention shifting rules in PARSIFAL. These
new results are being evaluated and will be presented
in a forthcoming PhD thesis (Faisal, 1989).

The potential for exploiting the notion of extensional
programming is also very good. The dependency on
inductive learning will be greatest in those domains
which are difficult to analyze. These are exactly the
domains in which standard expert system techniques
break down. We have begun to examine an approach
to NLP based almost exclusively on inductive training
sequences (Kwasny & Faisat, 1989). This looks prom-
ising, but is a topic for further research.
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. Rule Initial

. Rule Yes-No-QQ

. Rule Imperative

. Rule Parse-Subj

. Rule Start-Aux

Rule Aux-Attach

. Rule Aux-

Perfective

. Rule Aux-

Progressive

Rule Aux-
Passive

If
then

If

then
If

then
If

then

If

then

then

If

then

If

then

If

then

stack is empty
Creat a new S node

current node is §

no attachments

first item is an auxiliary
verb

second item is NP node

Switch

current node is S

no attachments

first item is a infinitive
verb

Insert YOU

current node is §

no attachments

first item is NP node

second item is a verb

Attach the first item as
NP

current node is S

first item is a verb

AUX node is not attached
Create

AUX node

current node is §

first item is AUX node

Attach the first item as
AUX

current node is AUX

first item is auxiliary of
root HAVE

second is past participle
verb

Attach the first item as
PERF.

current node is AUX

first item is auxiliary of
root BE

second is present
participle verb

Attach the first item as
PROG.

current node is AUX

first item is auxiliary of
root BE

second is past participle
verb

Attach the first item
PASSIVE

10.

.

12

14.

15.

17.

18.

19.

20.

21.

22,

Rule Aux-Modal

Rule Aux-Do

Rule Aux-
Complete

. Rule MVB |

Rule MVB 2

Rule Passive |

. Rule Passive 2

Rule Obiects

Rule PP-Under-
VP

Rule VP-Done 1

Rule VP-Done 2

Rule S-Done 1

Rule S-Done 2

If

then

If

then

if

then

If

then

If

then

If

then

If

then

If

then

If

then
If

then

then
If

then

If

then

current node is AUX

first item is auxiliary of
type Modal

second is infinitive verb

Attach the first item as
MODAL

current node is AUX

first item 1s auxiliary of
root DO

second is infinitive verb

Attach the first item as
DO

current node is AUX

first item is not auxiliary

Drop the current node
into the buffer

current node is S

first item is a verb

AUX node is attached

Create VP node

current node is VP

first item is a verb

Attach the first item as
MVB

current node is VP

auxiliary of the S node is
passive

Create NP

the current node is NP

Drop the current node
into the buffer

current node is VP

first item is NP node

Attach the first item as
NP

current node is VP

first item is PP node

Attach the first item as PP

current node is VP

first item is FinalPunct.

Drop the current node
into the buffer

current node is S

first item is VP node

Attach the first item VP

current node is §

first item is Final Punct.

Attach the first item as
FIN.

current node is §

buffer is empty

Stop, reporting a
successful parse
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APPENDIX B
Grammar Rule Encoding
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