[t

Evolution of a Hybrid Deterministic Parser

Kanaan A. Faisal and Stan C. Kwasny
T

Center for Intelligent Computer Systems
Department of Computer Science
Washington University
St. Louis, Missouri 63130

1. Introduction

A hybrid deterministic parser is under development. It combines the notions of deterministic
parsing initiated by Marcus (1980) in the PARSIFAL system with that of connectionism. The
result is a parser which is decidedly more robust than PARSIFAL (Marcus, 1980) and which com-
pares favorably with various of its extensions. Our Connectionist Deterministic Parser (CDP)
represents a departure from traditional deterministic parsers in its combination of both symbolic
and sub-symbolic (connectionist) components. The symbolic component manages the stack as
well as the flow of sentence elements into the buffer while the sub-symbolic component decides
how these structures should be managed and receives its training based on patterns derived from
the rules of a deterministic grammar.

Three generations of experiments are described. In each sct of experiments the size of the
grammar increases as does the complexity of the task. In scaling up, similar results are found for
each of the grammars. Our training techniques, therefore, are shown to be app cablc to succes-
sively larger subsets of English. The approach permits some simplifications over
ministic parsers, including the elimination of rule packets and priorities. Furtherore, parsing is
performed more robustly by the sub-symbolic component and with more tolerance \for error in the

~ parsing process. Data are presented which show how a neural network trained with linguistic

rules can parse grammatical, ungrammatical, and lexically ambiguous sentences.

2. Determinism and NLP

If we accept the determinism hypothesis posed by Marcus (1980) in his work on PARSIFAL,
it must follow that Natural Language Processing (NLP) need not depend in any fundamental way
on backtracking. As a further consequence, no partial structures need be produced during parsing
which fail to become part of the final structure. Extensions to PARSIFAL have been researched
independently including the parsing of ungrammatical sentences in PARAGRAM (Charniak,
1983), the resolution of lexical ambiguities in ROBIE (Milne, 1986), and the acquiring of syntac-
tic rules from examples in LPARSIFAL (Berwick, 1985). The three extensions to PARSIFAL are
all derivatives of deterministic parsing, but represent independent solutions in specific problem
areas. The integration of their processing capabilities is one goal of our work (Kwasny et al.,
1990). The ultimate goal is to produce a parser that is capable of learning some reasonable facil-
ity with language, but does not fail on mputs that are only slightly different from the inputs it is
designed to process.

Determinism in PARSIFAL is accomplished by permitting lookahead of up to three consti-
tuents within a buffer designated for that purpose. A stack permits embedded structures and facil-
itates processing. Rules are partitioned into packets which become active or inactive during

T The sponsors of the Center are McDonnelt Douglas Corporation and Southwestern Bell Telephone Company.

2nd Midwest Artificial Intelligence and Cognitive Science Society Conference

parsing, but are usually associated with the current (top-level) node of the structure being built. A
single processing step consists of selecting a rule from an active rule packet and firing the rule.
Conflicts are resolved from the static ordering (priority) of rules within the packet. The action
effects changes to the stack and buffer. After a series of processing steps, a termination rule fires
and processing is terminated. The final structure is left on top of the stack. '

3. Connectionist Deterministic Parsing

As Figure 1 illustrates, CDP is organized into a symbolic component and a sub-symbolic
component. The latter component is simulated by an adaptive neural network. The two com-
ponents cooperate in a tightly coupled manner since there are proven advantages to this type of
organization (Kitzmiller and Kowalik, 1987). For CDP, the advantages are competition and
robustness (see Kwasny and Faisal, 1989).

The sub-symbolic component of CDP contains a connectionist network trained using back-
ward propagation (Werbos 1974; Rumelhart et al, 1986) from rule templates which are derived
from the deterministic grammar. Rule templates are intermediate between symbolic rules and the
training patterns required by the network. Each rule template typically represents a large number
of patterns. Actions in CDP are performed symbolically on traditional data structures which are
also maintained symbolically. '

The symbolic component manages the input sentence and the flow of constituents into the
lookahead buffer, coding them as required for the input level of the network in the sub-symbolic
component. On the return side, it examines the activations of the output units, decides which
action to perform, and performs that action. It is the responsibility of the sub-symbolic com-
ponent, therefore, to yield a preference for a specific action. These preferences are garnered from
many iterations of back-propagation learning with instances of the rule templates. Learning itself

SUB-SYMBOLIC SYMBOLIC

Coded Actions

[Join [shoud| Jee——— have scheduled the meeting,

- | ~
<7 N

s
Coded Stack & Buffer E @@

Figure 1: CDP System Overview

2nd Midwest Artificial Intelligence and Cognitive Science Society Conference

occurs off-line and is time-consuming, but once learned the system is efficient. The feed-forward
multiplication of weights and computation of activation levels for individual units produce the
pattern of activation on the output level. Activation of output units is interpreted in a winner-
take-all manner, with the highest activated unit determining the action to be taken.

During sentence processing, the network is presented with encodings of the buffer and the
top of the stack. The model does not actual see the raw sentence but a canonical representation of
each word in a form that could be produced by a simple lexicon, although such a lexicon is not
part of the model in its present form. The network produces the action to be taken which is then
performed. If the action creates a vacancy in the buffer and if more of the sentence is left to be
processed then the next sentence component is moved into the buffer. The process then repeats
until a stop action is performed, usually when the buffer becomes empty. Iteration over the input
stream is achieved in this fashion.

When a sentence form like *‘John should have scheduled the meeting’’ appears in the input
stream, the first two constituents fill the buffer as shown in Figure 1. These contents along with
the contents of the top of the stack and its attachments are encoded and presented to the network.
The network, in turn, produces a single action which is then executed symbolically. This process
repeats until a stop action is performed at which time the resultant parse structure is left on top of
the stack.

Training of CDP proceeds by presenting patterns to the network and teaching it to respond
with an appropriate action. The input patterns represent encodings of the buffer positions and the
top of the stack from the deterministic parser. The output of the network contains a series of units
representing actions to be performed during processing and judged in a winner-take-all fashion.
Network convergence is observed once the network can achieve a perfect score on the training
patterns themselves and the error measure has decreased t6 an acceptable level (set as a parame-
ter). .

Our neural network simulator features a logistic function that computes values in the range
of -1 to +1. Each grammar rule is coded as a training template which is a list of feature values. In
general, each constituent is represented by an ordered feature vector in which one or more values
is ON(+1) for features of the form and all other values are either OFF(-1) or DO NOT CARE (?).
A rule template is instantiated by randomly changing 7 to +1 or -1. Thus, each template can be
instantiated to give many training patterns and each training epoch is slightly different. It is obvi-
ously impossible to test the performance of all these cases, so for the purpose of judging conver-
gence, a zero is substituted for each 7 in the rule template to provide testing patterns. For more
discussion of the training process, see Faisal and Kwasny (1990).

4. Experimentation

Our experimentation has examined three very different target grammars, which we shall call
small, medium, and large. Figure 2 shows some of the characteristics of these grammars for com-
parison. The small grammar is based on an example from the Winston Al text (1984). The net-
work requires 44 input units to encode the stack and three-place buffer. Our choice of 15 hidden
units is determined empirically. The medium and large grammars, based loosely on appendices C
and D in Marcus (1980), contain 22 and 73 rules respectively. The network configurations reflect
an increase from 5 to 20 to 40 actions. A variety of training runs have been made with each gram-
mar. Shown is the number of presentations of training patterns sufficient to get good convergence
and generalization results, although fewer presentations often give satisfactory results also. The

-3-

h ;.‘

2nd Midwest Arificial Intelligence and Cognitive Science Society Confererce

Target Grammars
Small Medium Large
Number of Rules 13 22 73
Number of Actions 5 20 40
Network Size 44-15-5 35-20-20 66-40-40
Presentations (x 1000) 200 - 500 1000
Based On Example Appendix C Appendix D
(Winsion, 1984) | (Marcus, 1980) (Marcas, 1980)

Figure 2: Summary of Target Grammars Used in CDP

large grammar is the major focus of a forthcoming Ph.D. thesis as proposed by Faisal (1989).

In our initial attempt to demonstrate the feasibility of our approach, a small, simple grammar
is used. It features S, NP, VP, and PP structures with an assumed preprocessing for noun phrases.
Coding of three rule packets (S, VP, and PP) as rule templates provides training data for the 44-
15-5 unit network. Perfect performance, as determined by presentation of a limited number of test
sentences, is achieved for the 13 grammar rules coded. No generalization experiments were per-
formed due to the limited nature of the grammar.

A second set of experiments shows how a variety of more complicated mechanisms essential
to PARSIFAL are realized in our architecture. The medium grammar is much more sophisticated
than the small one and permits reasonable generalization experiments to be conducted. It is capa-
ble of processing a variety of simple sentence forms such as simple declaratives, simple passives,
imperative sentences, and yes-no questions. Appendix C of Marcus (1980) serves as the model
for the rules of this grammar. It represents all of the basic mechanisms of deterministic parsing as
discussed for PARSIFAL.

In a third set of experiments, a much larger and more general grammar is used. In this case,
the grammar consists of 73 rules and represents rules for parsing many sentence forms such as
simple declarative sentences, passives, imperatives, yes-no questions, wh-questions, wh-clauses,
and other embedded sentences.

With the medium and large grammars, several sentences are coded for testing and com-
parison purposes. Some would parse correctly by the rules of the deterministic parser, while oth-
ers are mildly ungrammatical and lexically ambiguous. Most of these examples are drawn from
work cited earlier by Charniak and Milne. In parsing the sentences, the performance of the net-
work is measured in two ways: first, by the validity of the structure produced; and second, by the
average strength of the response of the neural network. Strength is measured as the reciprocal of
the average error for each step. In this way, it is determined if the network is generalizing in any
useful way and whether its responses are being challenged by other ones. Several dozen sentences
have been examined and tested with each grammar and desirable generalization properties have
been shown.

In examining grammars of varying sizes, our objective is to determine whether the same gen-
eralization properties seen in the medium grammar would scale up to a much larger and more
realistic set of grammar rules. .Our data supports this conclusion.

-4

2nd Midwest Artificial Intelligence and Cognitive Science Society Conference

5. Summary

With our hybrid architecture for connectionist deterministic parsing, the functionality of
symbolic deterministic parsing is demonstrated in addition to other capabilities. Training
becomes difficult as the complexity of the grammar increases, but many of the advantages of the
connectionist approach can be realized by modifying a deterministic parser as described. Like-
wise, many of the drawbacks of previous connectionist attempts at NLP can be overcome, while
addressing some of the deficiencies of symbolic models. Thus, the marriage is a good one from
our perspective. _ o .

Finally, since CDP is based on rules, there are general lessons for rule-based systems. In
particular, if robustness, generalization, and other properties of connectionism are desired in an
expert system, our approach suggests a method for achieving those properties. This is further dis-
cussed in Kwasny and Faisal (in press). '

References

Berwick, R.C. 1985. The Acquisition of Syntactic Knowledge. Cambridge, MA: MIT Press.

Charniak, E. 1983. A Parser with Something for Everyone. In M. King, (Ed.), Parsing Natural
Language. New York, NY: Academic Press.

Faisal, K.A. and S.C. Kwasny. 1990. Deductive and Inductive Learning in a Connectionist
Deterministic Parser. In Proceedings of the International Joint Conference on Neural Net-
works (Vol. 2, pp.471-474). Hillsdale, NJ: Lawrence Erlbaum Associates.

Faisal, K.A. 1989. CDP: Connectionist Deterministic Parser (Technical Report WUCS-89-33).
St. Louis, MO: Washington University, Department of Computer Science.

Kitzmiller, C.T., and J.S. Kowalik. 1987. Coupling Symbolic and Numeric Computing in
‘Knowledge-Based Systems. Al Magazine, 8, 85-90.

Kwasny, S.C., K.A. Faisal, and W.E. Ball. 1990. Unifying Several Natural Language Systems in
a Connectionist Deterministic Parser. In Proceedings of the Western Multi Conference:
Artificial Intelligence and Simulation, (vorracoMmc). '

Kwasny, S.C., and K.A. Faisal. (in press). Rule-Based Training of Neural Networks. Expert Sys-
tems with Applications (Special Issue on Applying Artificial Neural Networks to Expert
Systems). Elmsford, NY: Pergamon Press.

Kwasny, S.C. and K.A. Faisal. 1989. Competition and Learning in a Connectionist Deterministic
Parser. In Proceedings of the 11th Annual Conference of The Cognitive Science Society.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Marcus, M. P. 1980. A Theory of Syntactic Recognition for Natural Language. Cambridge, MA:
MIT Press.

Milne, R. 1986. Resolving Lexical Ambiguity in a Deterministic Parser. Computational Linguis-
tics, 12, 1-12.

Rumelhart, D. E., G. Hinton, and R.J. Williams. 1986. Leamning Internal Representations by
Error Propagation. In D.E. Rumethart and J.L.. McClelland & the PDP Research Group
(Eds.), Parallel Distributed Processing (Vol. 1). Cambridge, MA: MIT Press.

Werbos, P. 1974, Beyond Regression: New Tools for Prediction and Analysis in Behavioral Sci-
ence. Unpublished doctoral dissertation, Harvard University, Cambridge, MA.

Winston, P.H. 1984. Artificial Intelligence (2nd ed.). Reading, MA: Addison-Wesley.

-5-

	page 1
	page 2
	page 3
	page 4
	page 5

