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cessing a wider variety of sentence forms. Data are presented which demonstrate its capabilities for pars-
ing grammatical as well as ungrammatical and lexically ambiguous sentences.
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1. Introduction

A Connectionistic Deterministic Parser (CDP) extends previous symbolic work by introducing a
sub-symbolic component that replaces the English parsing rules . Learning is achieved in the neural net-
work through backward error propagation . A more robust parser results - one which is capable of pro-
cessing a wider variety of sentence forms. Data are presented which demonstrate its capabilities for pars-
ing grammatical as well as ungrammatical and lexically ambiguous sentences.

The determinism hypothesis which forms the basis for PARSIFAL (Marcus, 1980) imposes impor-
tant restrictions on Natural Language Processing (NLP). NLP need not depend in any fundamental way on
backtracking. Garden path sentences , of course , are an exception to this. Extensions to PARSIFAL have
been researched independently including the acquiring of syntactic rules from examples in LPARSIFAL
(Berwick, 1985), the parsing of ungrammatical sentences in PARAGRAM (Charniak, 1983), and the reso-
lution of lexical ambiguities in ROBIE (Milne , 1986). The integration of the processing capabilities of
these systems is one goal of our work (Kwasny et al., 1990).

2. Connectionist Deterministic Parsing
CDP combines the concepts and ideas from deterministic parsing together with the generalization

and robustness of connections[ , adaptive (neural) networks . The ultimate goal is to produce a parse that is
capable of learning some reasonable facility with language, but does not fail on inputs that are only slightly
different from the inputs it is designed to process. Our experiments have examined two different
approaches to grammar learning and compared them (Faisal and Kwasny , 1990).

Parsing experiments are conducted to determine the effectiveness of training and to investigate
whether the connectionist network generalizes properly in ungrammatical and lexically ambiguous cases.
In comparison with other deterministic parsing systems, CDP performs favorably. Much of the perfor-
mance depends on the extent and nature of the training , of course, but our results show that through proper
training a connectionist network can indeed exhibit the same behavioral effect as the rules. Furthermore,
once trained, the network is efficient , both in terms of representation and execution.

Some modification to the deterministic grammar rules seen in PARSIFAL and LPARSIFAL are
necessary to insure the suitability of each rule for use with our "winner -take-all" network. These changes
are minor and in some cases greatly simplify the rules. They are made without altering the capabilities
represented in the original set of grammar rules. Some of these changes have been proposed by others.
The basic changes to the rules are: elimination of the packet system ; removal of the attention -shifting
mechanism ; removal of rule priorities; reduction of lookahead to two positions instead of three; and revi-
sion of the rules so that a single action is performed by each . In principle, only the last change is required.

Actions such as creating and attaching or selecting the argument structure of the verb are carried out
symbolically in CDP. Also, a symbolic lexicon is consulted to determine the properties of words. When a
predicate such as a verb is encountered , the requirements or expectations for its arguments are made part of
the features of the active VP node , thus affecting which actions will be executed later on . It should be
noted that this simplification strategy parallels that of modem linguistic theory in that specific conditions on
rule application have been "factored out" into general constraints that need to be learned.

CDP is capable of successfully processing a wide variety of sentence forms such as simple declara-
tive sentences , passives , imperatives , yes-no questions , wh-questions , wh-clauses , and other embedded sen-
tences. The grammar to be learned by the subsymbolic system, which has 73 rules, can be separated into
base phrase structure rules and transformational -type rules. The base structure system can be further bro-
ken down into rules for NPs, VPs, auxiliaries, main sentence, PPs, and embedded sentences . Transforma-
tional rules fall into two groups: simple local transformations (like subject-aux inversion) and major move-
ment rules like wh movement. Rules for analyzing verb phrases discriminate among verbs that take dif-
ferent kinds of complements . For example, verbs that take a wh complement are discriminated from ones
that take a that complement.

3. Architecture of CDP

CDP is composed of a connectionist network trained using backward propagation (Werbos 1974;
Rumelhart et al, 1986) from rule templates derived from the deterministic grammar. Rule templates are
intermediate between symbolic rules and the training patterns required by the network in that a rule
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template encodes a rule , but typically represents a large number of training patterns. They serve to relate
situations that occur during parsing with the action deemed appropriate for that situation . Actions in CDP
are performed symbolically on traditional data structures which are also maintained symbolically.

As Figure 1 illustrates , CDP is organized into a symbolic component and a sub-symbolic component
The latter component is implemented as a numeric simulation of an adaptive neural network . The sym-
bolic and numeric components cooperate in a tightly coupled manner since there are proven advantages to
this type of organization (Kitzmiller and Kowalik , 1987). For CDP, the advantages are performance and
robustness.

The symbolic component manages the input sentence and the flow of constituents into the lookahead
buffer, coding them as required for the input level of the network in the sub -symbolic component On the
return side, it evaluates the activations of the output units , decides which action to perform , and performs
that action, potentially modifying the stack and buffer in the process . The responsibility of the sub-
symbolic component , therefore, is to examine the contents of the buffer and stack and yield a preference
for a specific action. These preferences are garnered from many iterations of back-propagation learning
with instances of the rule templates . Learning itself occurs off-line and is a time -consuming process, but
once learned the processing times for the system are excellent Computations need only flow in one direc-
tion in the network. The feed-forward multiplication of weights and computation of activation levels for
individual units produce the pattern of activation on the output level. Activation of output units is inter-
preted in a winner-take-all manner, with the highest activated unit determining the action to be taken.

In the set of experiments described here, the network has a three -layer architecture, as illustrated,
with 66 input units , 40 hidden units, and 40 output units. Each input pattern consists of two feature vectors
from the buffer items and one vector from the stack. The first vector activates 26 input units and the
second vector activates 12 input units in a pattern vector representing a word or constituent of the sentence.
The stack vector activates 28 units representing the current node on the stack and its immediate attach-
ments. One hidden layer has proven sufficient in all of these experiments . The output layer permits the
choice of one out of 40 possible actions that can be performed on a single iteration of processing . Further
details of the architecture are available in (Kwasny and Faisal, 1989a).
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Figure 1: CDP System Overview
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During sentence processing , input patterns represent encodings of the buffer items and the top of the
stack. What the network actually sees in the input layer is not a sequence of words but a canonical
representation of each word in the sentence in a form that could be produced by a simple lexicon , although
such a lexicon is not part of the implementation presently. The output layer of the network contains a
series of units representing possible actions to be performed during processing and judged in a winner-
take-all fashion . If an action creates a vacancy in the buffer and if more of the sentence is left to be pro-
cessed then the next sentence component is moved into the buffer. The process then repeats until a stop
action is performed, usually when the buffer becomes empty . Iteration over the input stream is achieved in
this fashion.

From the figure, the nature of the processing can be seen. When a sentence form like "John should
have scheduled the meeting." appears in the input stream , the first two constituents fill the buffer. These
contents along with the contents of the top of the stack and its attachments are encoded and presented to the
network. The network, in turn , produces a single action which is then executed symbolically , yielding
changes in the buffer and stack. This process repeats until a stop action is performed at which time the
resultant parse structure is left on top of the stack.

4. Learning a Rule-Based Grammar
Training of CDP proceeds by presenting patterns to the network and teaching it to respond with an

appropriate action . Network convergence is observed once the network can achieve a perfect performance
on the training patterns themselves and the error measure has decreased to an acceptable level. A sentence
is parsed by iteratively presenting the network with coded inputs and performing the action specified by the
network . Each sentence receives a score representing the overall average strength of responses during pro-
cessing . For more discussion of the learning process , see Faisal and Kwasny (1990).

Berwick (1979; 1985) describes LPARSIFAL, a grammar acquisition system that represents gram-
matical knowledge as a set of rules. LPARSIFAL begins with a knowledge of X-bar theory (Chomsky,
1980) and an interpreter for applying grammar rules to parse sentences . LPARSIFAL attempts to parse a
new sentence using rules it already knows. If it reaches a point at which blockage occurs and no rule can
apply, the system attempts to create a new rule that will handle the situation . In composing the rule , condi-
tions are derived from the state of the parse at the point of blockage . The top of the stack and the contents
of the input buffer determine those conditions . Upon adding the new rule to memory , existing rules are
checked for identical actions. When such rules are found , they may be generalized into a new rule if the
conditions are similar.

CDP, unlike LPARSIFAL, does not learn rules but it requires the network to exhibit the correct
rule-following behavior after being trained. Training occurs through the mechanism of backward propaga-
tion. No symbolic rules are learned as such, but the behavioral characteristics of the rules are captured
within the parameters of the network . Furthermore, the behavior is guaranteed to approximate , as closely
as desired , the behavior suggested by the rule template (in the case of deductive training) or that required in
the sample training sentences (in the case of inductive training). Success depends partially on the size of
the network (e.g, number of hidden units), partially on the convergence rate, and partially on the quantity
of training employed.

There are two distinct approaches to training a network to parse sentences . Each of these training
strategies results in a slightly different version of CDP. The difference lies in the nature of the training pat-
terns presented. The "deductive" strategy uses rule "templates" derived from the rules of a deterministic
grammar. It is deductive in the sense that it is based on general knowledge in the form of rules although
the resultant network must process specific sentences . The "inductive" strategy derives its training
sequence from coded examples of sentence processing . It is inductive in the sense that it is based on traces
of the processing of specific sentences but must generalize to a wider range of examples . The goal of both
deductive and inductive learning is to produce a network capable of mimicking the rules or sentence pro-
cessing on which its training is based and to do so in a way that generalizes to many additional cases.

In deductive training , each grammar rule is coded as a training template which is a list of feature
values, but templates are not grouped into packets . In general , each constituent is represented by an
ordered feature vector in which one or more values is ON(+1) for features of the form and all other values
are either OFF(-1) or DO NOT CARE (7). A rule template is instantiated by randomly changing ? to +1
or -1 with equal probability of O.S. Thus, each template represents many training patterns and each
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training epoch is slightly different. During training, the network learns the inputs upon which it can rely in
constructing its answers and which inputs it can ignore . For more discussion on training , see Kwasny and
Faisal (1989b).

Inductive training uses training patterns derived from traces of the states encountered and actions
performed during the processing of actual sentences . This processing is guided by application of the rules
of a deterministic grammar as before . In many ways , the task of the inductively-trained CDP parallels that
of LPARSIFAL. In LPARSIFAL the object is to learn (symbolic) grammar rules from examples of correct
sentences and its success is gauged by direct comparison with . the rules of PARSIFAL. Similarly, in CDP,
traces showing the processing of correct sentences must generate the proper sequence of actions and suc-
cess is determined by the appropriateness of the resultant structure . Additionally , CDP must show general-
ization to novel sentences.

Deductive training generally performs well on all generalization tasks and outperforms inductive
training by scoring generally higher on all experiments. Reasons for this include the specificity of the
inductive training data as well as the lack of a large amount of training data in the inductive case required
to provide sufficient variety . Inductive learning is a much more tedious process since much more data is
required as compared to that required for deductive training. Also, the range of sentence types handled
depends greatly on the completeness of the examples presented . Deductive training imposes an ordering
on the training patterns that assures a completeness which is difficult to achieve with inductive training, but
inductive training patterns reflect the frequency of rule occurrences seen in actual sentence processing.

5. Performance
For testing purposes , several sentences are coded that would parse correctly by the rules of the deter-

ministic parser. Additionally , several mildly ungrammatical and lexical ambiguous sentences are coded to
determine if the network generalizes in any useful way. Most of these examples are drawn from work
cited earlier by Berwick, Chamiak , and Milne. The objective is to discover exactly how syntactic context
can aid in resolving such problems.

Experimentation with grammatical sentences confirms that indeed the rules from the grammar have
been lamed sufficiently to parse sentences . When training with the rule templates , testing for convergence
is possible by changing each ? to a zero value. Here the performance of CDP is examined with actual sen-
tences and the results substantiate the claim that CDP simulates both PARSIFAL and LPARSIFAL.

Grammatical sentences , by our definition, are those which parse correctly in the rule-based grammar
from which the training set is derived . Table 1 shows several examples of grammatical sentences which
are parsed successfully along with their response strengths . These strengths are computed as the reciprocal
of the average error per processing step for each sentence and reflect the certainty with which individual
actions for building structures are being selected . Although there is no real meaning in the values of these
numbers, they are a useful means of comparing responses during sentence processing. Each example
shows a relatively high average strength value , indicating that the training data has been learned well.
Parse trees are developed which are identical to ones produced by other deterministic parsing systems.
Sentences containing words shown followed by parentheses are presented to CDP unambiguously, even
though these words have ambiguous uses . The lexical choices are shown in parentheses.

Capabilities described above only duplicate what can be done rather comfortably symbolically. Of
course, the feedforward network in CDP allows very fast decision making due to the nature of the model.
But what other features does the model possess? Importantly, how robust is the processing?

PARAGRAM symbolically extends deterministic parsing to ungrammatical sentences by a rule-
scoring algorithm . To demonstrate its generalization capabilities , CDP is tested with several examples of
ungrammatical sentences . Its performance is strictly dependent upon its training experiences since no
relaxation rules (Kwasny and Sondheimer , 1981), meta-rules (Weischedel and Sondheimer, 1983), or other
special mechanisms were added to the original grammar rules to handle ungrammatical cases. In Table 2,
ungrammatical sentences used in testing are shown along with their average strengths. These examples
produce reasonable structures when presented to our system . Note that overall average strength is lower
for ungrammatical sentences when compared to similar grammatical ones.

In sentence (lb), for example, the structure produced was identical to that produced while parsing
sentence (1a). The only difference is that the two auxiliary verbs, have and should, were reversed in the
parse tree . Such scrambling of words is beyond the capabilities of PARAGRAM as pointed out by
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Chamiak (1983, p.138). Sentence (2b) contains a disagreement between the auxiliary has and the main
verb schedule and but parsed identical to sentence (3a). Sentences (3b) and (4b) parse comparable to sen-
tence (26a). Sentence (4b), in fact, demonstrates how the presence of extra words does not deter CDP as it
did PARAGRAM (Chamiak, p.138). Another example from PARAGRAM is sentence (5b) which is pro-
cessed as if it were progressive tense ('The boy is hitting Jack'). When this sentence is presented to
PARAGRAM, a nonsensical parse structure is produced for this sentence as reported by Chamiak (1983, p.
137). In CDP it produced a structure like that of sentence (27a), but there is not one clear choice for how
the sentence should appear if grammatical . The problems with using a syntax -based approach to handling
ungrammatical sentences are well-known (see, for example, Kwasny , 1980). Finally , sentence (6b) pro-
duced a very strong response, but the comparable grammatical sentence (5a) produces an even stronger
response . Sentences like (6b) are commonly misspoken forts of English.

As a further test of the generalization properties of CDP, sentences containing lexically ambiguous
words are tested . Some of these sentences are shown in Table 3. Of course, ROBIE takes a symbolic
approach in extending PARSIFAL to address these issues by requiring additional rules and lexical features.
Note that in the deterministic approach, it is essential for lexical items to be properly disambiguated or
backtracking will be required

In testing CDP, normal sentences are presented, except that selected words are coded ambiguously
(here indicated by angle brackets < > around the word). In the cases shown , the lexically ambiguous words
were correctly interpreted and reasonable structures resulted , although lower strengths were observed.
CDP utilizes syntactic context to resolve these ambiguities and automatically works to relate novel situa-
tions to training cases through the generalization capability of the network . As before, no additional rules
or mechanisms are required to provide this capability.

Our examples are all based on examples from Milne (1986 ). Sentence (1c) contains the word will
coded ambiguously as an NP and an auxiliary , modal verb . In the context of the sentence, it is clearly
being used as a modal auxiliary and the parser treats it that way. A similar result was obtained for sentence
(2c) which parses as (29a). In sentence (3c), hit is coded to be ambiguous between an NP (as in playing
cards) and a verb. The network correctly identifies it as the main verb of the sentence as in sentence (28a).
Sentence (4c) is constructed as for sentence (30a). Sentence (5c) presents can ambiguously as an auxiliary,
modal, and main verb, while fish is presented uniquely as an NP. Can is processed as the main verb of the
sentence and results in the same structure as sentence (31a). Likewise, sentence (6c), which contains f sh
coded ambiguously as a verb/NP and can coded uniquely as an auxiliary verb , produces the same structure
as sentence (32a). In the cases shown , the lexically ambiguous words were disambiguated and reasonable
structures resulted Note that the overall average strengths were lower than comparable grammatical sen-
tences discussed , as expected.

6. Summary
CDP implements a deterministic parser based on the rules from a deterministic grammar . The result

is a combined symbolic/sub-symbolic system which exhibits characteristics from several well-known
extensions to the basic deterministic parser. These extended properties come essentially for free due to the
use of connectionism . The grammar used in these experiments is derived , with minor modifications, from
one used by Marcus, but with much inspiration from Berwick , Chamiak, and Milne. Only small
modifications are required in the grammar to accommodate our particular architecture in CDP.
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TABLE 1: Grammatical Sentences Tested

Sentence Form Avg. Strength

(la) John should have scheduled the meeting for Tuesday. 56.9
(2a) Scheduled a meeting for Tuesday. 29.4
(3a) Has John scheduled the meeting for Tuesday? 36.8
(4a) John has scheduled the meeting for Tuesday. 55.1
(5a) The meeting has been scheduled for Tuesday. 565.5
(6a) The meeting seems to have been scheduled for Tuesday. 70.8
(7a) The jar seen broken. 53
(8a) I persuaded John to do it. 39.7
(9a) I saw him do it. 382

(10s) Mary wants John to have a patty. 463
(I Is) Mary waits to have a party. 57.9
(12s) When will the man put in the comer? 3762
(13a) What will the man put the book in? 23.7
(14a) Who did John see? 4273
(15a) Who schedule a meeting? 38.3
(16s) Who is scheduling a meeting? 61.0

(17s) What in the man scheduling? 11.5
(18a) What did Bob give Mary? 32.1
(19a) The man who wanted to meet Mary has disappeared. 33.0
(20a) The man who hit Mary with a book has disappeared. 29.2

(21a) Thermo, wham Mary hit with a book has disappeared. 254.5
(22a) I told that boy that boys should do it. 19.9
(23a) That mouse that the at chased had squeaked. 8.8
(24a) I told Sun you would schedule the meeting. 4.3

(25a) I told the girl that you would schedule the meeting. 5.8
(26a) John is scheduling the meeting forTuesday. 54.7

(27a) The boy did hit Jack . 137.7

(28a) Tom hit(v) Mary. 293
(29a) Tom will(amk) hit(v) Mary. 125.8

(30a) The will(noun) gave the money to Mary. 61.9

(31a) They can(e) 6sh(np). 30.0

(32a) They can(aux)6sh(v). 63

A Case for Sub-Symbolic Learning

TABLE 2: Ungrammatical Sentences Tested

Sentence Form Avg. Strength

(lb) 'John have should scheduled the meeting for Tuesday. 14.4

(2b) 'Has John schedule the meeting for Tuesday? 32.3

(3b) 'John is schedule the meeting for Tuesday. 9.5

(4b) 'John is is scheduling the meeting for Tuesday. 7.2

(5b) 'The boy did hittinglack. 14.8

(6b) ' The meeting is been scheduled for Tuesday. 559.6

TABLE 3: Lexically Ambiguous Sentences Tested

Sentence Form Avg. Strength

(lc) <Will> John schedule the meeting for Tuesday? 5.0

(2c) Tom<will> hit Mary. 29.8
(3c) Tan4it> Mary. 13.6
(4c) The <wil > gave the money to Mary. 16.6
(5c) They <can> fish(np). 20.6

(6c) They an(sux) <fish>. 2.9
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