
Principles of Curriculum Design and Revision: A Case
Study in Implementing Computing Curricula CC2001

M.R.K. Krishna Rao, S. Junaidu, T. Maghrabi, M. Shafique, M. Ahmed, K. Faisal

Information and Computer Science Department
College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

Dhahran 31261, Kingdom of Saudi Arabia

{krishna,sahalu,maghrabi,shafique,mahmed,faisal}@ccse.kfupm.edu.sa

ABSTRACT
Our department has recently revisited its computer science
program in the light of IEEE/ACM Computing Curricula 2001
(CC2001) recommendations, taking into consideration the
ABET’s Criteria for Accrediting Computing programs (CAC 04-
05). The effort resulted in a revised curriculum. This paper
presents the different decisions we made with regard to the
curriculum orientation, knowledge units coverage, transition
management, and monitoring and assessment. The paper also
sheds some light on challenges faced. Tables provided in the
paper show that the curriculum successfully implements CC2001
recommendations while satisfying the CAC 04-05.

Categories and Subject Descriptors
K.3 [Computers & Education]: Computer and Information
Science Education – Computer Science Education

General Terms
Documentation, Design, Standardization.

Keywords
Curriculum revision, CC2001, Core Technologies.

1. INTRODUCTION
Though KFUPM is the oldest university in the country, it has
always strived to keep up-to-date with advances in science and
technology as well as emerging trends in education philosophy. It
has been very active in starting new programs and revising
existing programs. It currently has 15 departments granting BS
degree in more than 20 majors. In addition the university grants
MS and PhD degrees in most of these majors. Attempts have been
made to get accreditation from international boards for these
programs. For instance, our computer science program was
recently reviewed and certified by ABET/CSAB to be
substantially equivalent to any program in North America

accredited by them. The university provides modern facilities like
smart classrooms and good laboratories giving every opportunity
for students to excel. Class section sizes are strictly limited to 30
so that a healthy teacher-student ratio is maintained for its nearly
10,000 students. Its reputation and overall quality of education
attracts a good student population. Its admission procedure
screens students in two stages and only the top 4% students
passing the second examination are admitted.
A couple of years ago, we subjected our old program to an
assessment by a CSAB visitation team. In response to their
feedback, we embarked upon revising our curriculum to closely
follow CC2001 recommendations, meet our program objectives
and satisfy ABET’s Criteria for Accrediting Computing programs
for the 04-05 cycle (CAC 04-05).

Designing a new program or revising an existing program is a
demanding exercise that requires skill, care and patience. Any
team embarking on this exercise needs to address the following
questions:

1. what general principles of curriculum design should be
closely followed and which of them given higher priority,

2. what general skills should be imparted to the students to
produce graduates that are ready for productive life after
leaving university and to be lifelong learners,

3. what particular skills and concepts, specific to the discipline,
should be taught and reinforced with good project work, and

4. how best to achieve the above goals, e.g., through activities-
based or objectives-based curriculum design.

Answers to these questions determine the direction taken by the
team and the objectives of the program.

We identified (1) progression, (2) balance, (3) flexibility, (4)
coherence, (5) integrity and (6) currency as the important
principles guiding our curriculum design exercise and decided to
accord the highest priority to flexibility.

The general skills identified as important to be imparted to the
students are (a) communication skills, (b) critical thinking skills,
(c) mathematical rigor, (d) scientific temper and (e) ability to
work in teams. These skills are highly valued by employers in
their recruitments (see e.g., [6]). The specific computer science
concepts and skills identified as central to our curriculum are
program construction, analysis and testing, data structures,
algorithms, programming paradigms, operating systems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.
Copyright 2005 ACM 1-59593-024-8/05/0006…$5.00.

256

databases, data mining, discrete structures, theory of computation,
logic, networks, security, distributed computing, graphics,
multimedia, modeling, human computer interaction and software
engineering. These concepts cover most of the items listed as core
technologies in [5] and the core knowledge units identified in [1].
Our decisions on general and CS skills are in accordance with the
objectives of our program that our graduates will

1. be able to understand, analyze, design, and implement
high quality software solutions to real-life problems,

2. be able to function effectively as team members,
3. be able to neatly present their developed solutions in

written as well as verbal forms,
4. be aware of their professional and ethical

responsibilities, and
5. be able to pursue independent continuous learning.

As for the fourth question, how best can we achieve the above
goals, we deliberated on activities-based and objectives-based
curriculum design and as explained in a later section, we have
opted for the objectives-based curriculum design mainly because
most of the textbooks organize their content in topic-based
fashion. We also deliberated on the six implementation strategies
for introductory courses mentioned in CC2001 and decided to
continue with the objects-first strategy adopted by our department
even before CC2001 made this classification.

The rest of the paper validates the result of our revision exercise
by checking that the decisions made in answer to the questions
discussed above are closely followed and the stated goals are met.
Section 2 discusses the strategic decisions we made and Section 3
outlines how best our curriculum covers the core knowledge units.
Section 4 discusses how we ensure that general skills are imparted
adequately, while Section 5 validates the curriculum against the
general principles of curriculum design.1 Section 6 discusses
implementation issues and Section 7 compares our program with
other CS programs.

2. STRATEGIC DECISIONS
This section discusses the decisions we made and the
justifications for them. The main decisions are:

1. continuing with our three-course sequence strategy of
covering the introductory material,

2. provision for a rich coverage of theory,
3. adoption of objects-first curriculum design,
4. promotion of AI course from elective to core course,
5. making Database, Networking and Software

Engineering courses prerequisite to the Summer
Training or Coop programs, and

6. establishing four concentration areas.

We have been using a three-course sequence of introductory
computer science courses for the past six years. This sequence is
aimed at introducing students to the fundamentals of computer
science and developing the skills necessary for applying them in
higher-level courses. Implementation of this introductory
sequence before the current review was based on an amalgam of

1 It may be noted that the organization of our paper follows the V-

model of software development and validation described in
Sommerville [11, figure 19.3].

the breadth-first and the object-first approach. The new design is
based the objects-first model emphasizing object-oriented design
and programming from the very beginning, in line with the world
wide shift towards object-oriented software engineering.

With an aim of providing our students with a good mathematical
foundation, we decided to have two discrete structures courses,
one algorithms and complexity analysis course besides an elective
course on theory of computation. Our discrete structures courses
include material on abstract algebra, temporal logics and an
introduction to Church-Turing thesis besides the core topics
suggested in [1].

With regards to curriculum orientation, we deliberated on
activities-based and objectives-based curriculum design. We
opted for an objectives-based curriculum mainly because most
textbooks organize their content in topics-based fashion.

We added a core course on Artificial Intelligence, in response to
the observation by a CSAB visitation team. We also require our
students to take the Databases, Networking and Software
Engineering courses before going for summer training or coop
programs. This is in response to students’ and employers’ input
towards maximizing the gain in team-working skills and practical
experience from these programs.

Aiming to give our students ample opportunity to pursue their
topics of interest in a focused manner and greater detail, we
structured our advanced and elective courses into 4 concentration
areas taking the faculty expertise and the needs of our immediate
community into account. They are: Information Management,
Intelligent Systems, Net-centric Computing and Systems.

3. CORE KNOWLEDGE AREAS
In deciding the extent of coverage of various CS concepts, we
used the CC2001 report as a guide and adequately covered the 13
suggested knowledge areas. We describe this coverage in the next
few paragraphs with emphasis on the coverage in the introductory
courses sequence and the theory-based courses sequence.

Table 1. Introductory Sequence Coverage

 Core & elective units covered

Knowledge area ICS102 ICS201 ICS202 Total

PF. Programming
Fundamentals (38)

16+7 11+4 12+3 53

AL. Algorithm &
Complexity (31)

 3+1 20+6 30

PL. Programming
Languages (21)

11+5 15+5 2+0 38

SE. Software
Engineering (31)

 7+2 2+2 13

Table 1 shows the coverage in the introductory sequence: ICS102
(Introduction to Computing I), ICS201 (Introduction to
Computing II) and ICS202 (Data Structures). These courses
roughly correspond, respectively, to CS101o, CS102o and
CS103o of the CC2001 report. The numbers in brackets (under
the “Knowledge Area” column) indicate the minimum coverage

257

hours recommended. The numbers in the “Total” column show
that the introductory sequence cover all the core knowledge units
of Programming Fundamentals, Programming Languages and part
of the Algorithms & Complexity and Software Engineering
knowledge areas. Some elective knowledge units are also covered
in the introductory courses. For example, multithreading is
covered in ICS201, elements of physical database design (B-
Trees, IM9) and data compression & decompression (NC7) are
covered in ICS202.

Each course in the introductory sequence has a laboratory
component to complement and provide practical coverage of the
lecture material. The laboratory tasks are typically extended with
design and programming assignments to carryout tasks beyond
classroom coverage. There is also a final lab project that students
are required to defend at the end of the semester.

Table 2 shows the coverage of our theory (core) courses. These
three courses together cover the Discrete Structures area and the
remaining part of the Algorithm & Complexity area that was not
covered by our introductory sequence. In addition to covering the
core requirements of CC2001, we have over twenty lecture-hours
coverage on elective topics like number theory, automata, lattices,
abstract algebra and temporal logics. This strong mathematical
foundation equips our graduates well to pursue higher studies in
many areas of computer science and to solve real-life problems.

Table 2. Mathematical Foundation Coverage

 Core + elective units covered

Knowledge area ICS253 ICS254 ICS353 Total

DS. Discrete
Structures (43)

45 15 60

PF. Programming
Fundamentals (38)

 6 6

AL. Algorithm &
Complexity (31)

 6 38 44

Nine other courses in the curriculum cover the other core
knowledge units in a topics-based fashion as highlighted in
Section 2. These courses cover knowledge units in the areas of
Computer Architecture, Operating Systems, Computer Networks,
Programming Languages, Artificial Intelligence, Databases and
Software Engineering. Most of these courses have a laboratory
component, in line with our emphasis on learning by doing.

An exception to the topics-based coverage is the coverage of core
units in Social and Professional Issues knowledge area. Coverage
of these issues is spread across core courses in the curriculum
(primarily in a humanities course offered by a sister department
and secondarily in our software engineering course).

In summary, this section highlights how our curriculum covers the
core knowledge areas in CC2001 report. While covering these
knowledge units adequately, we give a lot of emphasis on practice
and theory. Our curriculum also covers a significant subset of the
core technologies identified by Denning in [5].

4. GENERAL SKILLS
This section discusses how we ensure that our graduates have
adequate general skills identified in Section 1.

Communication skills: The importance of communication skills
in the present era of fierce competition cannot be over-
emphasized. It is impossible to find a career that does not require
them. In particular due to rapid changes in computer and software
technology, it is imperative for a computer science graduate to
possess good communication skills. Our curriculum aims to
develop

• writing skills through courses like software engineering
which require production of written documents as
deliverables at regular intervals, and a specialized course in
Technical Report Writing (where students are required to
write about recent developments in CS (based on articles that
appeared in journals and magazines in the last two years) for
general audience, to be evaluated by English teachers),

• oral presentation skills through senior courses having
projects as a part of assessment (e.g., database systems,
software engineering, senior/coop project) and require formal
presentations, and

• ability to critique oral presentations by requiring students
to evaluate presentations from their classmates (however, it is
left to the teacher to decide whether to take student
evaluation into account or not) in many of courses requiring
oral presentations.

Critical thinking skills: Critical thinking may be defined as the
ability to analyze facts, generate and organize ideas, defend
opinions, make comparisons, draw inferences, evaluate arguments
and solve problems [4]. It inculcates a way of reasoning that
demands adequate support for one's beliefs and an unwillingness
to be persuaded unless support is forthcoming [12]. Our courses
on discrete structures and AI contain a significant component of
deductive reasoning and logic teaching how to draw inferences
and evaluate arguments. The courses on algorithms and data
structures teach analysis and problem solving, and courses like
databases and software engineering introduce brainstorming
(generate ideas), compare-and-contrast and decision making.

Recently, we came to a conclusion that teaching critical thinking
skills needs a concerted effort and initiated a research project to
infuse various critical thinking skills into the content of 3
introductory courses (ICS 102, 201 and 202) and reinforce in 3
intermediate and advanced courses (ICS 353, databases and
software engineering) using graphic organizers that include
questions for clarification, questions about viewpoints and
perspectives, questions that probe assumptions, evidence,
reasoning, implications and consequences.

Mathematical rigor: As both CC1991 and CC2001 rightly point
out, mathematics techniques and formal mathematical reasoning
are integral to most areas of computer science, and should be
introduced early within a student’s course work. We have opted
for two courses in discrete mathematics, in addition to the two
calculus courses every undergraduate student at our university
should take. In fact, we cover topics like abstract algebra and
temporal logics, which are not part of the core knowledge units
identified in CC2001. We included abstract algebra and lattices to

258

facilitate study of programming languages semantics, and
temporal logics to facilitate study of agent systems (where BDI
logics use various modal operators [9]) and concurrency.

Scientific Temper: CC2001 states that the scientific method (data
collection, hypothesis formation and testing, experimentation,
analysis) represents a basis methodology for much of computer
science, and it is vital that students must “do science”—not just
“read about science.” Our curriculum has twelve courses with a
lab component. These courses provide many opportunities to give
students a solid exposure to the scientific methodology and
develop scientific temper. A course on statistics provides basic
competencies in experimentation and data analysis, which are
identified as important empirical skills in [3].

Teamwork: It is a widely accepted fact that software development
is a team activity and a single individual (even if he is a super
programmer) cannot develop any reasonably complex software
required by the society in this information era. To give students an
appreciation for teamwork and make them aware of coordination/
cooperation problems that may crop up once in a while with
teams, our introductory courses give project assignments and
senior courses in Database and Software Engineering give
projects of reasonable sizes. Senior projects, summer projects and
coop work further strengthen teamwork ethics. Taking advantage
of the booming software industry around us, most of our students
go for coop and summer training in industry.

5. PRINCIPLES OF GOOD CURRICULUM
This section validates our curriculum against the principles
identified in Section 1.

Progression: By closely following CC2001 prescriptions
about introductory, intermediate and advanced courses, we
ensure that the demands on the learner in intellectual
challenge, skills, knowledge, conceptualization and learning
autonomy increase. Introductory courses employ lower level
cognitive skills (knowledge, comprehension, application and
analysis) while intermediate and advanced courses require
the higher-level cognitive skills (synthesis and evaluation) of
the Bloom’s taxonomy [2].

Balance: As discussed earlier, our curriculum includes a
substantial subset of core technologies identified in [5]
covering enough breadth. This together with our
concentration areas and courses in physical education and
ethics as well as exposure to the world outside the university
through coop and summer projects ensure a healthy balance
between breadth and depth of the subject material and overall
personal development and academic achievement.

Coherence and Integrity: The coherence principle requires
that the program has a logical structure and is linked to the
program objectives, and the integrity principle requires that
the stated objectives are feasible. The coherence and integrity
of our curriculum follows from the fact that every deviation
from CC2001 recommendations and the old program is made
only when a careful analysis justified it.

Currency: Our labs use latest tools like Rational Rose,
Oracle, MS Project, and the two main platforms –Linux and
Windows– ensuring the currency of our program.

Furthermore, we have two ‘special topics’ courses so that
latest trends in the industry can be introduced to students by
the interested faculty members. These two courses are
regularly offered and are generally well-populated.

Flexibility: We have accorded the highest priority to the
flexibility principle and decided to have two options (with
coop or summer training) and four concentration areas in
Information Management, Intelligent Systems, Net-centric
Computing and Systems administration. The program allows
a student to choose seven elective courses of his choice
giving a lot of flexibility to the student to pursue his/her
interests to a greater depth than other topics.

6. IMPLEMENTATION & MONITORING
This section discusses the implementation and monitoring
activities of our curriculum revision exercise.

Designing a new undergraduate program or revising an existing
one is a challenging task. Getting it approved by the concerned
authorities and implementing it is even more challenging. We
took more than two years2 in getting the approval of our
colleagues (who are not directly involved in curriculum design)
and authorities – confirming that curriculum revision needs
patience in addition to skill and care. For the implementation of
the revised program, three activities were identified: (1) transition
from the current to the revised program, (2) ensuring the
achievement of stated objectives and skills, and (3) continuous
monitoring of the program for needed changes.

Objective for the transition phase was defined to move maximum
students to the revised program in minimal time with no loss or
minimal loss of courses taken by a student from the old program.
A mapping table between the existing courses and the revised
courses was developed. From the mapping table, a set of
acceptable moves were developed. For each move a transition rule
was defined. These rules were given to all the academic advisors
for effective advising and to the office of the registrar for
implementation.

For ensuring the achievement of stated objectives and skills, a
detailed course description template was developed. The template
included the set objectives, learning outcomes, topics and
subtopics along with the estimated time for each topic, textbook
information, evaluation techniques, grading policy, and lab details
for the courses with labs. The departmental curriculum committee
analyzed the detailed course descriptions, tabulated the
departmental/program objectives with the course objectives, and
ensured that the departmental objectives are appropriately
supported by the course objectives.

Continuous monitoring of the program is done using various
assessment tools. These tools include graduating student survey,
faculty survey, alumni survey, and employer survey. Every
graduating student is required to complete a questionnaire
developed by the curriculum committee. The questionnaire
addresses all aspects of the program related to the core
technologies covered, general skills, and curriculum design.

2 We take solace in knowing that we are not alone in this aspect

and most curriculum revisions take similar amount of time [7].

259

Completed questionnaires provide the department with immediate
feedback from its graduates. For soliciting input from alumni,
employers, and faculty, similar surveys are conducted. These
surveys address various aspects of the program and provide
comprehensive feedback on the program. Feedback from all these
sources is used to identify the shortcomings of the program. Some
shortcomings are addressed immediately while others are used as
input for the next revision of the program.

The university administration realized the importance of
developing its own exit exams in addition to the national and
international major field assessment tests. While major field
assessment test has the advantage of providing us with a ready-
made exam and results that can be compared against national
groups, we have no control over the questions and a mismatch
between the exam and the curriculum that may creep in because of
the rapid changes in computer science. On the other hand, a
locally developed exit exam eliminates this problem, but it takes a
considerable amount of time to develop and must be constantly
revised. Our department has initiated the work on developing an
exit exam by preparing lists of MFE (mastery, familiarity, and
exposure) topics for each course as suggested in [8].

7. OVERALL PICTURE
This section discusses how the revised curriculum compares with
the old curriculum; ABET requirements and curriculums at other
reputable universities. We have chosen the following three
universities in view of their ranking in top 50 (one close to top 10,
another close to 30 and the other close to 50) and the availability
of information about their curriculum.

Table 3. Comparison of CS programs

Requirement New Old ABET
Criteria USC G.

Tech
Texas
A&M

 Mathematics
& Science 30 29 30 28 30 33

Humanities &
Soc. Sciences 25 23 30 34 28 37

CS core and
electives 62 68 ≥ 40 50 51 54

Free electives 12 12 - 16 18 12

TOTAL 129 132 - 128 127 136

The above table shows that our revised program is comparable to
the programs at the three reputable universities in North America3
and meet ABET criteria better than the old program. However, we
are still falling short of ABET requirements regarding humanities
and social sciences. Ours being a technological university, there is
a shortage of resources in offering adequate courses in humanities
and social sciences. The university is aware of this and is
currently working towards a solution to this problem.

3 It also follows from the fact that the ABET/CSAB team certified

our old program to be substantially equivalent to any program in
North America accredited by them.

8. CONCLUSION
In this paper, we described the revision of our computer science
program in the light of IEEE/ACM Computing Curricula 2001
(CC2001) recommendations, taking into consideration ABET’s
Criteria for Accrediting Computing programs (CAC 04-05).
Rather than narrating curriculum revision with storytelling as
suggested in [10], we described our revision using a validation
process to show that the result of this exercise satisfied the goals
set in answering the four questions stated in section 1 – good
curriculum principles, general skills, discipline specific skills and
means of revision.

9. ACKNOWLEDGMENTS
The authors would like to thank (a) the King Fahd University of
Petroleum and Minerals for supporting this research work, and (b)
other colleagues in the curriculum committee for their
contributions and whole hearted support in the very demanding
task of curriculum revision.

10. REFERENCES
[1] ACM//IEEE. Computing Curricula 2001. Electronic version

available at http://www.acm.org/sigcse/cc2001/.
[2] Bloom, B.S. (Ed.), Taxonomy of educational objectives: The

classification of educational goals: Handbook I, cognitive
domain. Longmans, New York, 1956.

[3] Braught, G., Miller, G.S., and Reed, D. Core empirical
concepts and skills for computer science, In Proceedings of
the SIGCSE symposium on Computer Science Education
(SIGCSE’04). ACM Press, New York, NY, 2004, 245-249.

[4] Chance, P. Thinking in the classroom: A survey of programs.
Teachers College, Columbia University, 1986.

[5] Denning, P.D. Great Principles of Computing,
Communications of the ACM, 46 (Nov 2003), 15-20.

[6] Hagan, D. Employer satisfaction with ICT graduates, In
Proceedings of the Sixth Australasian Computing Education
Conference (ACE’04), 119-123, 2004.

[7] Lee, J.A.N., Humanization of the computer science
curriculum, In Proceedings of InSITE’02. Informing Science
Press, 2002, 908-914.

[8] McDonald, M. and Mcdonald, G. Computer science
curriculum assessment, In Proceedings of SIGCSE technical
symposium on Computer science education (SIGCSE’99),
194 – 197, 1999.

[9] Rao, A.S. and Georgeff, M.P. Modeling rational agents
within a BDI-architecture. In Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning (KR’91), 473-484, 1991.

[10] O’Riley, P. A different storytelling of technology education
curriculum revisions: a storytelling of difference, Journal of
Technology Education, 7, 2 (1996), 28-40.

[11] Sommerville, I. Software Engineering, Addison-Wesley,
2001.

[12] Tama, C. Critical thinking has a place in every classroom.
Journal of Reading, 33 (1989), 64-65.

260

