
SWE344

Internet Protocols and Client-Server
Programming

Dr. El-Sayed El-Alfy alfy@kfupm.edu.sa

Mr. Bashir M. Ghandi bmghandi@ccse.kfupm.edu.sa

Computer Science Department
King Fahd University of Petroleum and Minerals

Module 2c: C# Programming Essentials Module 2c: C# Programming Essentials

Objectives

Learn more about how C# programs are organized
Learn how to declare Methods and Classes
Learn how Inheritance and Polymorphism are
achieved
Learn how to declare and implement Interfaces
Learn about structures (struct) and Enumerators
(enum)
Learn how to raise and handle exceptions
Learn how to do basic file IO using Streams.

2KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Agenda

Interfaces
Structures (struct) and Enumerators (enum)
Exceptions
Basic File IO using Streams

3KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Interfaces

Like Java, Interfaces are used to minimize the effect
of lack of multiple inheritance.
Interfaces contain only method specification without
implementation. The methods are implicitly public
and abstract – declaring them as such is an error.
Unlike Java, interfaces cannot have even constant
fields.
A class can implement multiple interfaces.
However, there is no “implements” keyword.
Instead, a colon is used for implements.

4KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example1
1. using System;
2. public interface MyComparable {
3. int CompareTo(Object obj);
4. }
5. public abstract class Shape : MyComparable {
6. public String name() {
7. return GetType().Name;
8. }
9. public abstract double Area();
10. public abstract double Perimeter();
11. public override String ToString() {
12. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
13. }
14. public int CompareTo(Object obj) {
15. Shape shape = (Shape) obj;
16. if (Area()< shape.Area())
17. return -1;
18. else if (Area() > shape.Area())
19. return 1;
20. else
21. return 0;
22. }
23. }

5KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example2
1. using System;
2. namespace Shapes {
3. public abstract class Shape : IComparable {
4. public String name() {
5. return GetType().Name;
6. }
7. public abstract double Area();
8. public abstract double Perimeter();
9. public override String ToString() {
10. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
11. }
12. public int CompareTo(Object obj) {
13. Shape shape = (Shape) obj;
14. if (Area()< shape.Area())
15. return -1;
16. else if (Area() > shape.Area())
17. return 1;
18. else
19. return 0;
20. }
21. }

6KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example2 …
22. public class Rectangle : Shape {
23. private double length;
24. private double width;
25.
26. public double Length {
27. get {return length;}
28. set {length = value;}
29. }
30. public double Width {
31. get {return width;}
32. set {width = value;}
33. }
34. public Rectangle(double length, double width) {
35. this.length = length;
36. this.width = width;
37. }
38. public override double Area() {
39. return length*width;
40. }
41. public override double Perimeter() {
42. return 2*length + 2*width;
43. }
44. }

7KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example2 …
45. public class Square : Rectangle {
46. public Square(double length) : base(length, length) {
47. }
48. }
49. public class Circle : Shape {
50. private double radius;
51. public double Radius {
52. get {return radius;}
53. set {radius = value;}
54. }
55. public Circle(double r) {
56. radius = r;
57. }
58. public override double Area() {
59. return Math.PI * (radius * radius);
60. }
61. public override double Perimeter() {
62. return 2.0 * Math.PI * radius;
63. }
64. }

8KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

9KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example2 …
65. public class TestShapes {
66. public static void Main(String[] args) {
67. Shape[] shape = new Shape[3];
68. shape[0] = new Rectangle(20, 10);
69. shape[1] = new Square(10);
70. shape[2] = new Circle(7);
71. for (int i=0; i<shape.Length; i++)
72. Console.WriteLine(shape[i]);
73. foreach (Shape s in shape) {
74. if (s is Circle) {//using is and as operators
75. Circle c = s as Circle;
76. Console.WriteLine("The radius is: "+c.Radius);
77. }
78. }
79. Array.Sort(shape); //sorting the shapes
80. Console.WriteLine("sorting");
81. for (int i=0; i<shape.Length; i++)
82. Console.WriteLine(shape[i]);
83. }
84. }
85. }

Structures
struct is a lightweight version similar to a class in its
declaration and in terms of the members it can have.
Like a class, struct members can be constructors, constants,
fields, methods, properties, indexers, operators, and nested
types.
Structs are treated as value types not reference types hence
– they are stored in the stack
– they don’t incur the overhead associated with reference objects

except when boxed
Simple example
struct Color{

public int Red;
public int Green;
public int Blue;

}

10KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Structures …

Because a struct is a value type, it is
allocated memory once it’s declared (without
using new keyboard)
Color rgb;
rgb.Red = 0;
rgb.Green = 0;
rgb.Blue = 0;

A struct can also be initialized using new, e.g.

Color rgbColor = new Color();
Console.WriteLine(rgbColor.Red);

implicit default
constructor that

initializes the fields of
a struct to their default

values.
11KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Structures …

You can define non-default constructors as well as
methods

1. struct Color
2. {
3. public int Red;
4. public int Green;
5. public int Blue;
6. public Color(int red, int green, int blue)
7. {
8. Red = red;
9. Green = green;
10. Blue = blue;
11. }
12. public override String ToString()
13. {
14. return "(Red="+ Red + ", Green=" + Green + ", Blue=" + Blue+")";
15. }
16. }

12KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Structures …

structs have some limitations
– No support of inheritance (can not be derived from or used to derive

other classes or structs)
• Except System.Value from which all structs are derived
• But a struct can implement an interface

– Cannot define a default constructor (it is always defined
automatically) but can explicitly define non-default constructors

– Cannot define a destructor
– No copy constructor (you can directly use =)

As a general rule, you should use structs only when:
– The data being contained is very small,

• e.g., structs that hold Point values (x and y), RGB Color values.
– The struct will contain few or even no methods to access or modify

the contained data.

13KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Enumerators

An enumeration (enum) is a special form of value type,
which is used to assign symbolic names to a restricted set of
values of an underlying integral type (int, uint, byte, sbyte,
short, etc – except char).
An enumeration type has a name, an underlying type, and a
set of fields.
– fields are static literals, each of which represents a constant.

Example: declare an enum representing week days.
1. public enum WeekDay {
2. Sunday,
3. Monday,
4. Tuesday,
5. Wednesday,
6. Thursday,
7. Friday,
8. Saturday
9. }

default settings:
the value type is int;
the first literal specified is
set to 0 and this value is
then incremented for
each subsequent literal.

14KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Enumerators …

To access the value a specific field, use the dot
operator
– E.g., WeekDay.Sunday is the integer 0 and

WeekDay.Saturday is the integer 6.
You can change the type and the value assigned to
the first literal, e.g.

1. public enum WeekDay : byte {
2. Sunday = 1,
3. Monday,
4. Tuesday,
5. Wednesday,
6. Thursday,
7. Friday,
8. Saturday
9. }

15KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Enumerators …

The advantage of using enum is that they make a
program more readable and less error prone than
using the underlying values directly.
For example, compare the following two methods:

1. public static bool IsWeekEnd(WeekDay day) {
2. return day == WeekDay.Thursday || day == WeekDay.Friday;
3. }

1. public static bool IsWeekEnd(int day) {
2. return day == 5 || day == 6;
3. }

16KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Enumerators …
Clearly, the first method (using enum) is more readable.
Also since the second method takes an int as argument, it is
possible to call it with any int value – which could lead to
errors -- whereas, the first method can only take one of its
specified values.
System.Enum class provides some methods that can be
used to manipulate enum types.
Example – printing the literals and the values of the
WeekDay enumerator.

1. String[] names = Enum.GetNames(typeof(WeekDay));
2. foreach(string s in names)
3. Console.WriteLine(s);
4. byte[] values = (byte[]) Enum.GetValues(typeof(WeekDay));
5. foreach(byte i in values)
6. Console.WriteLine(i);

17KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Exception Handling
An exception is an object that encapsulates information
about an unusual program occurrence.
All exceptions in C# are run-time exceptions derived from the
System.Exception class.
An exception is different than a bug and error
– A bug is a programmer mistake that should be fixed before the code

is shipped
– An error is caused by user action, e.g. the user might enter a number

where a letter is expected
Bugs and errors can lead to exceptions
Even if you remove all bugs and anticipate all user errors,
you will still run into predictable but unpreventable problems,
– such as running out of memory or attempting to open a file that no

longer exists.
You can't prevent exceptions, but you can handle them so
that they don't bring down your program.

18KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Exception Handling …
Similar to Java, exceptions are handled using try statement.
There are three forms of try statement
– A try block followed by one or more catch blocks.
– A try block followed by a finally block.
– A try block followed by one or more catch blocks followed by a finally block.

Notes
– the code that may result in exception is placed in the try block.
– the catch block is used to handle the exception if it occurs.
– the optional finally block is used to place a code that must be executed

whether an exception is raised or not.
Note also that there are many options for the catch block:
– If there is no need to refer to the exception instance, then there is no need to

declare a variable to receive it.
– the whole catch expression can be omitted if there is no need to refer to the

resulting exception. This will catch all exceptions even those that are not
derived from the System.Exception class.

Finally, we note that c# does not have the throws keyword. If a method
does not wish to handle an exception, it just ignores it, and it will
automatically be forwarded to a higher method.

19KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. using System;
2. public class TestException {
3. public static double Divide(double x, double y) {
4. if (y==0)
5. throw new DivideByZeroException("Can't divide by zero");
6. else
7. return x/y;
8. }
9. public static void Main() {
10. try {
11. Console.Write("Enter first value: ");
12. double x = double.Parse(Console.ReadLine());
13. Console.Write("Enter second value: ");
14. double y = double.Parse(Console.ReadLine());
15. Console.WriteLine(x + "/" + y + " = "+ Divide(x, y));
16. }
17. catch (DivideByZeroException e) {
18. Console.WriteLine(e.Message);
19. }
20. catch (FormatException) {
21. Console.WriteLine("Format exception occurs");
22. }
23. catch {
24. Console.WriteLine("Some Other Exception occurs");
25. }
26. }
27. }

uses throw to raise
exception when the
second number is zero.

20KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

I/O Streams
A stream is a flow of data (sequence of bytes) traveling from
a source to a destination
– The source/destination can be a file, a network connection, or other

I/O devices
I/O operations are designed around streams.
– Network programming is mainly about Protocols and I/O, so it is

important to understand these IO classes.
The InputSream and OuputSream classes in Java are
unified in C# into a single abstract class called Stream.
– The Stream class defines operations for reading and writing raw,

typeless data in the form of bytes
Once a stream has been opened, it stays open and can be
read from or written to until the stream is flushed and closed.
– Flushing a stream updates the writes made to the stream
– Closing a stream first flushes the stream, then closes the stream

21KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example

An example that creates a text file on disk and uses
the abstract Stream type to write data to it

1. using System.IO;
2. class Test {
3. static void Main() {
4. Stream s = new FileStream("foo.txt", FileMode.Create);
5. s.WriteByte(67);
6. s.WriteByte(35);
7. s.Close();
8. }
9. }

22KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Stream Class Methods

int Read(in byte[] buffer, int
offset, int count)

Reads count bytes from a source and stores the bytes read
into the buffer array, stating at index offset. It returns the
number of the actual bytes read or 0

int ReadByte() Reads one byte from the stream and moves the position by
one byte, or returns -1 if at the end of the stream.

void Write(in byte[] buffer, int
offset, int count)

Writes count bytes from the buffer array, starting at index
offset, into a destination

void WriteByte(byte value) Writes a byte to the current position in the stream and
advances the position within the stream by one byte.

void Flush() Clears all buffers for this stream and causes any buffered
data to be written to the underlying device.

void Close() Closes the current stream and releases any resources
associated with the stream.

23KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

FileStream Class

Java provides separate classes for file input and file output
(FileInputStream and FileOutputStream)
In C#, FileStream is used for both input and output.
– FileStream is a concrete class that extends the Stream class.
– It allows streams of bytes to be transferred between a source file and

a destination file.

Another concrete class that extends the Stream class is the
NetworkStream class.
– A lot of our network programs will use this class.

Some Constructors of the FileStream class:
public FileStream(string path, FileMode mode)
public FileStream(string path, FileMode mode, FileAccess access)
public FileStream(string path, FileMode mode, FileAccess access, FileShare share)

24KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

FileStream Class …
FileMode
– An enumeration type that is used to indicate how the operating

system should open the file.
– Its values are

Append Opens the file if it exists and seeks to the end of the file, or creates a
new file. FileMode.Append can only be used in conjunction with
FileAccess.Write. Any attempt to read fails and throws an
ArgumentException.

Create Specifies that the operating system should create a new file. If the file
already exists, it will be overwritten.

CreateNew Specifies that the operating system should create a new file. If the file
already exists, an IOException is thrown.

Open Specifies that the operating system should open an existing file. A
FileNotFoundException is thrown if the file does not exist.

OpenOrCreate Specifies that the operating system should open a file if it exists;
otherwise, a new file should be created.

Truncate Specifies that the operating system should open an existing file. Once
opened, the file should be truncated so that its size is zero bytes.
Attempts to read from a file opened with Truncate causes an exception.

25KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

FileStream Class …

FileAccess
– specify whether the file is being opened for reading, writing or both.
– The values of the FileAccess enumeration are: Read, Write and

ReadWrite.

FileShare
– specify how other threads or processes should be allowed access to

the same file.
– The values of the FileShare enumeration are: Inheritable, Read,

Write, ReadWrite.

The methods of FileStream class are essentially the same as
those of the Stream class.
Some useful properties of the FileStream class are:
CanRead, CanWrite, Length (size) and Position.

26KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. using System;
2. using System.IO;
3. public class StreamFileIO {
4. public static void Main() {
5. try {
6. FileStream inFile = new FileStream("saudiflag.gif", FileMode.Open);
7. FileStream outFile = new FileStream("flagcopy.gif", FileMode.Create);
8. byte[] buffer = new byte[1024];
9.
10. while (inFile.Position < inFile.Length) {
11. int read = inFile.Read(buffer, 0, buffer.Length);
12. outFile.Write(buffer, 0, read);
13. }
14. inFile.Close();
15. outFile.Close();
16. }
17. catch (FileNotFoundException) {
18. Console.WriteLine("Sorry, File not found");
19. }
20. catch (Exception e) {
21. Console.WriteLine("Sorry, Exception: "+e);
22. }
23.
24. }
25. }

27KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Text IO
For the purpose of Text IO, C# has separate classes for input and output,
namely, StreamReader and SreamWriter, respectively.
SreamReader most common constructors:

public StreamReader(string path) //using UTF-8 as the default encoding scheme.
public StreamReader(string path, Encoding encoding)

Encoding types
– System.Text.ASCIIEncoding, System.Text.UnicodeEncoding,

System.Text.UTF7Encoding, System.Text.UTF8Encoding
Methods

int Read() Reads a single character, returns –1 if end of stream

int Peek() Returns the next character without reading it, or –1 if
end of stream.

void Read(char[], int offset,
int count)

Reads an array of characters

string ReadLine() Reads a line of characters

string ReadToEnd() Reads from the current position to end

28KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

StreamWriter

Common constructors
public StreamWriter(string path) //using UTF-8 as the default encoding scheme.
public StreamWriter(string path, bool append) //for appending
public StreamWriter(string path, Encoding encoding)
public StreamWriter(string path, bool append, Encoding encoding) //for appending

Basic methods of the StreamWriter class
– Write and WriteLine.

• These are overloaded to accept char, char[], string, and each of
the primitive types.

29KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. using System;
2. using System.IO;
3. public class TextFileIO {
4. public static void Main() {
5. try {
6. StreamReader inFile = new StreamReader("SWE344.txt");
7. StreamWriter outFile = new StreamWriter("output.txt");
8.
9. String line = null;
10. while ((line = inFile.ReadLine()) != null) {
11. Console.WriteLine(line);
12. outFile.WriteLine(line);
13. }
14. inFile.Close();
15. outFile.Close();
16. }
17. catch (FileNotFoundException) {
18. Console.WriteLine("Sorry, File not found");
19. }
20. catch (Exception e) {
21. Console.WriteLine("Sorry, Exception: "+e);
22. }
23. }
24. }

30KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

File Handling
C# provides a number of classes for handling Files at the file
system level. Operations such as Create, Copy, Move,
Delete for both files and directories are provided through the
following classes:
– File, FileInfo, Directrory and DirectoryInfo.

The File class
– All the methods in the File class are static, so there is no constructor.
– A problem with the File class is that each time one of its methods is

called, the system must check that the user has permission on the file
system before such operation is allowed. This can lead to
inefficiency if there is frequent calls to the methods.

– To solve this problem, C# provides the FileInfo class with similar set
of methods, but which are non-static. In this case, permission is only
checked at the point of creating an instance of FileInfo.

The Directory class provides static methods similar to those
of File class, but for manipulating directories. The
DrectoryInfo class provides instance methods, which are
more efficient.

31KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

File Class
static FileStream Create(String path) Creates the file specified by path and returns its

FileStream which can be used to write streams to
the file.

static StreamWriter CreateText(string path) Creates the file specified by path, and returns a
StreamWriter which can be used to write text to the
file.

static StreamWriter AppendText(string path) Opens a file for appending text.

static FileStream Open(string path,
FileMode mode)

 opens a FileStream on the file specified by path
using one of the FileStream open methods
described earlier.static FileStream Open(string path, FileMode

mode, FileAccess access)

static FileStream Open(string path, FileMode
mode, FileAccess access, FileShare share)

static StreamReader OpenText(string path) Opens a file for text input.

static void Copy(string source,
string destination)

Copies source file as destination

static void Move(string source,
string destination)

Moves source file to destination

static void Delete(string path) Deletes the file specified by path

static bool Exists(string path) Checks if the file specified by path exists

32KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example

shows how to use the methods of the File class.

1. using System;
2. using System.IO;
3. public class CopyFile {
4. public static void Main() {
5. try {
6. File.Copy("saudiflag.gif", "saudiflag2.gif");
7. }
8. catch (FileNotFoundException) {
9. Console.WriteLine("Sorry, File not found");
10. }
11. catch (Exception e) {
12. Console.WriteLine("Sorry, Exception: "+e);
13. }
14. }
15. }

33KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

