
SWE344

Internet Protocols and Client-Server
Programming

Dr. El-Sayed El-Alfy alfy@kfupm.edu.sa

Mr. Bashir M. Ghandi bmghandi@ccse.kfupm.edu.sa

Computer Science Department
King Fahd University of Petroleum and Minerals

Module 2b: C# Programming Essentials Module 2b: C# Programming Essentials

2KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Objectives

Learn more about how C# programs are organized
Learn how to declare Methods and Classes
Learn how Inheritance and Polymorphism are
achieved
Learn how to declare and implement Interfaces
Learn about structures (struct) and Enumerators
(enum)
Learn how to raise and handle exceptions
Learn how to do basic file IO using Streams.

3KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Agenda

OOP: Methods, and Classes
OOP: Inheritance and Polymorphism

4KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Organizing Types
C# provides full object-oriented technology, including
inheritance, polymorphism, and encapsulation
A C# program is a collection of types
– Defined in source files, organized by namespaces, and complied into

assemblies (.exe or .dll files).
– These organizational units generally overlap

• a source file can contain many namespaces and a namespace can span
several source files.

• an assembly can contain several namespaces and a namespace can
spread across several assemblies.

– For simplicity, unless you have too many classes in a namespace,
put related classes into a single namespace, in a single source file
and compile it into a single assembly.

In C#, the concept of a class, an interface, inheritance and
polymorphism are very similar to what is known in Java.
We shall concentrate on explaining the differences in these
concepts between the two languages

5KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Classes

A class defines a template from which objects are
created
A class is declared using the class keyword

[access-modifiers] class class-name{
class-body

}

A class in C# can contain
– Fields, constructors, methods and inner classes (helper

classes)
– Properties, events, indexers and operators

Fields and methods may either be instance (default)
or static

6KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. using System;
2. namespace Banking {
3. public class BankAccount {
4. const double charityRate = 2.5;
5. static int count;
6. string name;
7. int accountNumber;
8. double balance;
9. public BankAccount(string name) {
10. this.name = name;
11. accountNumber = ++count;
12. }
13. public BankAccount(string name, double amount) : this(name){
14. balance = amount;
15. }
16. public void Deposit(double amount) {
17. if (amount > 0)
18. balance += amount;
19. }
20. public void Withdraw(double amount) {
21. if (balance >= amount)
22. balance -= amount;
23. }

7KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example …

24. public double GetBalance() {
25. return balance;
26. }
27. public double GetAnnaulCharity() {
28. double charity = balance * charityRate /100;
29. balance -= charity;
30. return charity;
31. }
32. public static void PrintCustomerCount() {
33. Console.WriteLine("Number of Customers = "+count);
34. }
35. public override String ToString() {
36. return "Acc #:"+accountNumber + ":"+name + ": "+balance;
37. }
38. }

8KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example …
39. class TestAccount {
40. public static void Main() {
41. BankAccount acc1 = new BankAccount("Sami", 2000);
42. BankAccount acc2 = new BankAccount("Omar");
43. acc1.Deposit(3000);
44. acc1.Withdraw(4000);
45. Console.WriteLine(acc1);
46. acc2.Deposit(5000);
47. acc2.Withdraw(2000);
48. Console.WriteLine(acc2);
49. BankAccount.PrintCustomerCount();
50. }
51. } // end of TestAccount class
52. } // end of namespace
53.

9KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members

Fields
– A field is a member variable used to hold a value

(represents an attribute).
– You can apply several modifiers to a field, depending on

how you want it to be used such as
• const -- specifies that the value of the field or the local variable

cannot be modified (A const field can only be initialized at the
declaration of the field)

• static -- declares a member that belongs to the type itself rather
than to a specific object.

• readonly – declares a field that can only be assigned values as
part of the declaration or in a constructor in the same class;
readonly fields can have different values depending on the
constructor used; while a const field is a compile-time constant,
the readonly field can be used for runtime constants

10KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members

Fields …
– Examples

public const double x = 1.0, y = 2.0, z = 3.0;
public static const int c1 = 5.0;
public static const int c2 = c1 + 100;

– Default field values
Type default value

All numeric types 0
bool false
char ‘\0’
string or object reference null

11KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Methods
– A method is a group of declarations and other statements that

perform a specific task (define the behavior of the class instances)
– Defining a method

[access-modifiers] return-type method-name([para-type param-name, …..]){
method-body

}
– If a method returns a value, it must have a return statement
– If a method does not return a value, the return statement is optional

and the return type must be void
– You can define local variable inside the method
– If a parameter or local variable has the same name as a field name,

the field name is hidden
• To access the field name use this keyword (a reference to the current

object)

12KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Methods …
– The keyword this is used for two main purposes:

• Resolving name conflict between instance variables and method
or constructor parameters.

• Calling another constructor from a constructor in the same class.
However, we note that the call is placed in the header of the
calling constructor

• Example

public BankAccount(string name, double amount):
this(name){

balance = amount;
}

13KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Passing parameters
– By value – changes made to the parameter inside the method are not

affecting the actual variable in the method call
• The object reference is passed as a value but it can be used to the

content of the object
– By reference – use ref before the parameter in the method signature

and call; in this case changes to the parameter affects the variable in
the method call
• Try to minimize using call by reference

– When passing parameters by value or by reference, the variables that
are passed must be assigned values before the method is called

Out parameters
– A parameter can be declared to be out in the method signature and

call meaning it is used to return a value (similar to passing by
reference except that the variable is not initialized before passing it to
the method)

14KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Calling a method
– A class (static) method is called by
Class-Name.Method-Name(arguments)

– An instance method is called
Object-Reference.Method-Name(arguments)

Method overloading
– Define methods in a class that have the same name but

different parameters (different signatures)

15KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Constructors
– A method that has the same name as the class name

(usually used to initialize fields using parameters)
– A constructor does not have a return type
– If no constructor is defined, there will a default one
– You can define multiple overloaded constructors that

accept different parameters
– You can define constructors that allow copying the fields

from one object to another (copy constructors)
• Example
Student(Student x){
name = x.name;
quiz1 = s.quiz1;
quiz2 = s.quiz2;

}

16KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members …

Destructor
– Can be used to do something immediately before

removing an object by the garbage collector, e.g. closing
an opened file

– Has the same name as the class preceded by ~
– Does not take any parameter and does not have a return

type
– Example

~Student(){
// things to be done

}

17KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members ...

Properties
– Are the normal get and set methods we have in Java but in C# the set

and get operations are unified into a single unit.
– They are sometimes called smart fields because they’re actually

methods that look like fields to the class’s clients
• They behave exactly like methods. They are inherited by subclasses and

they can be hidden or overridden. They can have any of the modifiers
that a normal method can have.

– Allow the client a greater degree of abstraction because it doesn’t
have to know whether it’s accessing the field directly or whether an
accessor method is being called.

– To define a property, you must have at least one of get or set blocks.
– Notice that compiler automatically defines a variable, value, in the set

block to receive the set argument.
– Private fields and properties promote encapsulation

18KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members ...

Properties…

1. class BankAccount {
2. private double balance;
3. //....
4.
5. public double Balance { // define a property
6. get{ return balance; }
7. set{ balance = value; } // value is implicit parameter
8. }
9. }
10. //...
11. // create a bank account
12. BankAccount acc = new BankAccount();
13. acc.Balance = 12000.0; // implicit call to set
14. double z = acc.Balance; // implicit call to get

19KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Class Members ...

Using Access Modifiers
– To achieve encapsulation, a type may hide itself from other types or

other assemblies by adding one of the following access modifies:

Members in class A that are marked internal are accessible
to methods of any class in A's assembly.

internal

Members in class A that are marked protected internal are
accessible to methods of class A, to methods of classes
derived from class A, and also to any class in A's assembly.
This is effectively protected OR internal.

protected internal

Members in class A that are marked protected are
accessible to methods of class A and also to methods of
classes derived from class A.

Protected

Members in class A that are marked private are accessible
only to methods of class A. Default for classes (and structs)

private

Members marked public are visible to any method of any
class. Default for interfaces and enums.

public

20KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Objects

To declare a reference for a bank account
BankAccount acc1; // acc1 is null

To create an object, use new operator and a
constructor
acc1 = new BankAccount("Omar");

Before trying to access an object’s fields or methods
through an object reference, the object reference
must refer to a real object (i.e., is not null)

21KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Inheritance
To achieve code re-usability, a class can inherit from another
class – in C#, only single inheritance is allowed.
There is no “extends” keyword. Instead, a colon is used
after the header of the derived class followed by base class
identifier
– A class can extend only one class but it can implement several

interfaces
– The super class and the interfaces are listed after the colon

separated by commas.
– If there is a super class being extended, then it must appear first in

the list.
The base keyword:
– is used instead of the Java’s super, to refer to a superclass member.
– is used to call the constructor of the base class from within a

subclass. However, like this keyword, such a call should be in the
heading of the calling constructor.

22KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. class BankAccount{
2. private string num;
3. private double balance;

4. public BankAccount(string num, double balance){
5. this.num = num ;
6. this.balance = balance;
7. }
8. //...
9. }
10. class SavingAccount:BankAccount {
11. private double interest;
12.
13. public SavingAccount(string num, double balance,
14. double interest): base(num, balance){
15. this.intreset = interest;
16. }
17. //...
18. }

23KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Inheritance …

Overriding and hiding:
– In C#, overriding is not allowed by default.
– The base class must indicate that it is willing to allow its

method to be overridden by declaring the method as
virtual, abstract or override.

– The subclass must also indicate that it is overriding the
method by using the override keyword.

– The effect of overriding is the same as in Java –
Polymorphism. At run-time, a method call will be bound
to the method of the actual object.

– A subclass may also decide to hide an inherited method
instead of overriding it by using the new keyword

24KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example
1. using System;
2. class A {
3. public virtual void method() {
4. Console.WriteLine(" In A");
5. }
6. }
7. class B : A {
8. public override void method() { // override inherited method
9. Console.WriteLine("In B");
10. }
11. }
12. class C : B {
13. public new void method() { // hide inherited method
14. Console.WriteLine("In C");
15. }
16. }
17. class Test {
18. public static void Main() {
19. C c = new C(); c.method(); // calls C's method
20. B b = c; b.method(); //calls B's method
21. A a = c; a.method(); //calls B's method
22. }
23. }

25KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Casting Objects
Upcast: casting an object of a derived class to the base class
Downcast: casting an object of a base class to a derived
class
The as operator is used for type-conversion (down-casting).
– Example

Student s = new GraduateStudent(…);
GraduateStudent gs;
gs = (GraduateStudent) s;
gs = s as GraduateStudent; // another pretty equivalent

– The only difference is when the object in s is not compatible with
GraduateStudent. In that case, the first statement throws
InvalidCastException, while the second assigns null to gs.

The is operator is like the instanceof operator in Java. It
checks if an object is compatible with a type.
– Example:

if (s is GraduateStudent)
gs = s as GraduateStudent;

26KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Abstract Classes
A class that is declared using the abstract keyword
It may have abstract methods as well as implemented methods
An abstract method provides a method name and signature and must be
implemented in all derived classes.
Abstract classes establish a base for derived classes, but it is not legal to
instantiate an object of an abstract class.
An abstract class can be derived from another abstract class

1. using System;

2. public abstract class Shape {
3. public String name() {
4. return GetType().Name;
5. }
6. public abstract double Area();
7. public abstract double Perimeter();

8. public override String ToString() {
9. return "ShapeType:"+name() + ":" + Perimeter() + ":" + Area();
10. }
11. }

27KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Sealed Classes

Similar to final classes in Java, classes marked
sealed can not be used to derive other classes
sealed public class Student{
….
}

You can also mark a method as sealed to prevent
overriding it
A method can be marked as sealed in a non-sealed
class to prevent overriding it in a derived class
Classes are most often marked sealed to prevent
accidental inheritance.

28KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Notes

A type or type member cannot be declared to be
more accessible than any type it uses.
– For example, a class cannot be public if it extends an

internal class.
– A method cannot be protected if the type of one of its

parameters is internal.
Also access modifiers cannot be used when they
conflict with the purpose of inheritance.
– For example, an abstract method cannot be private.
– Similarly, a sealed class cannot define new protected

members since no class can benefit from them.

