
SWE344

Internet Protocols and Client-Server
Programming

Dr. El-Sayed El-Alfy alfy@kfupm.edu.sa

Mr. Bashir M. Ghandi bmghandi@ccse.kfupm.edu.sa

Computer Science Department
King Fahd University of Petroleum and Minerals

Module 2a: C# Programming Essentials Module 2a: C# Programming Essentials

Objectives

Learn about the C# operators and how they are
evaluated in expressions
Learn the Jump and Selection Constructs
Learn the Loop Constructs
Learn how to declare, instantiate, initialize and use
arrays

2KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Agenda

Operators and expressions
Math class
Random numbers
Flow control
Arrays

3KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Operators and Expressions

4KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

C# has almost identical set of
operators as Java
An expression is a sequence of
operators and operands that
specifies a computation
Operands can be variables,
constants, method calls, or an
expression
The precedence of the operators
controls the order in which the
individual operators are evaluated
Operators of the same precedence
are evaluated according to their
associativity

– Except for assignment operator, all
other binary operators are left-
associative and are evaluated from
left to right.

– The assignment operator, the unary
operator and the conditional
operator are evaluated from right to
left.

Category Operators

Primary [] dot new typeof sizeof

Unary + - ! ~ ++x --x (casting)x

Multiplicative * / %

Additive + -

Shift << >>

Relational and
type testing

< > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional
AND

&&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

Operators …

The typeof operator is used to obtain the System.Type object
for a type.

1. using System;
2. class Test
3. {
4. static void Main() {
5. Type t1 = typeof(int);
6. Type t2 = typeof(string);
7. Console.WriteLine(t1.FullName);
8. Console.WriteLine(t2.FullName);
9. }
10. }

5KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Math Class
The Math class
– Allows the user to perform

common math calculations
– Constants

• Math.PI = 3.1415926535…
• Math.E = 2.7182818285…

– Using methods
• Math.MethodName(

argument1, arument2, …)
– Example

Method Desc rip tion Examp le
Abs(x) absolute value of x Abs(23.7) is 23.7

Abs(0) is 0
Abs(-23.7) is 23.7

Ceiling(x) rounds x to the smallest
integer not less than x

Ceiling(9.2) is 10.0
Ceiling(-9.8) is -9.0

Cos(x) trigonometric cosine of x
(x in radians)

Cos(0.0) is 1.0

Exp(x) exponential method ex Exp(1.0) is approximately
2.7182818284590451
Exp(2.0) is approximately
7.3890560989306504

Floor(x) rounds x to the largest integer
not greater than x

Floor(9.2) is 9.0
Floor(-9.8) is -10.0

Log(x) natural logarithm of x (base
e)

Log(2.7182818284590451)
is approximately 1.0
Log(7.3890560989306504)
is approximately 2.0

Max(x, y) larger value of x and y
(also has versions for float,
int and long values)

Max(2.3, 12.7) is 12.7
Max(-2.3, -12.7) is -2.3

Min(x, y) smaller value of x and y
(also has versions for float,
int and long values)

Min(2.3, 12.7) is 2.3
Min(-2.3, -12.7) is -12.7

Pow(x, y) x raised to power y (xy) Pow(2.0, 7.0) is 128.0
Pow(9.0, .5) is 3.0

Sin(x) trigonometric sine of x
(x in radians)

Sin(0.0) is 0.0

Sqrt(x) square root of x Sqrt(900.0) is 30.0
Sqrt(9.0) is 3.0

Tan(x) trigonometric tangent of x
(x in radians)

Tan(0.0) is 0.0

area = Math.PI *
Math.Pow(radius, 2);

6KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Random Numbers

Random numbers may be generated in the .NET Framework
by making use of the System.Random class
Random x = new Random();

Generate a random whole number >= 1 and < 2,147,483,647
int rnum = x.Next();

Generate a random whole number >= 5 and < 10
int rnum = x.Next(5, 10);

Generate a random whole number >= 0 and < 10
int rnum = x.Next(10);

Generate a random number >= 0.0 and < 1.0
double rnum = x.NextDouble();

7KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Flow Control Structures
C# statements are evaluated in order (sequential flow)
unless there is a flow control statement
Unconditional branching statements (jump)
– Method invocation
– goto (not recommended)
– continue
– break
– return
– throw

Conditional branching statements (decision making,
selection)
– if, if-else, if-else-if statements
– switch statement

Loops (Repetition)
– Iterative statements (while, do-while, for, foreach)
– Recursive methods

8KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Method Invocation

Example
1. using System;
2. class Test
3. {
4. static void Main() {
5. int x = 5, y = 8;
6. int z = Max(x, y);
7. Console.WriteLine(“the max of {0} and {1} is {2}”,
8. x, y, z);
9. Console.WriteLine(“the max of {0} and {1} is {2}”,
10. x, y, Math.Max(x, y));
11. }
12.
13. static int Max(int a, int b){
14. return a>b? a: b;
15. }
16. }

9KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements

C# offers the same basic types of selection
statements as Java
if - else statement

1. if (grade >= 60)
2. Console.WriteLine(“Passed");
3. else
4. Console.WriteLine(“Failed");

Grade >= 60

print “Passed”print “Failed”

false true

10KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements …

You can have if without else (one-way branching)

print “Passed”Grade >= 60

true

false

1. if (grade >= 60)
2. Console.WriteLine(“Passed");

11KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements …

print “x > 0”x > 0

true

Nested if

false

x < 0 print “x < -10”
true

print “0>= x >=-10”

false

x+=10

Activity: Write the code
using nested if.

12KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements …

print “Positive”x > 0

true

if-else-if

false

x < 0 print “Negative”
true

print “Zero”

falseActivity: Write the code

- Using nested if.

- Using if-else-if

13KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements …

switch statement
– Has similar syntax as in Java.
– However, C# does not allow automatic fall through between cases,

which is the default in Java if a break statement is not used.
– In C# you must explicitly use a break or goto statement to indicate

where control should jump to.
1. int a = 2;
2. switch(a) {
3. case 1:
4. Console.WriteLine("a>0");
5. goto case 2;
6. case 2:
7. Console.WriteLine(" and a>1");
8. break;
9. default:
10. Console.WriteLine("a is not set");
11. break;
12. }

14KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Selection Statements …

switch statement …
– An exception to this rule is when a case does not specify

an action as in the following example:

1. switch(a) {
2. case 1:
3. case 2:
4. Console.WriteLine(" and a>0");
5. break;
6. default:
7. Console.WriteLine("a is not set");
8. break;
9. }

15KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Conditional Operator

The conditional operator returns one of two values,
depending upon the value of a boolean expression.
Example
int i = (x > y) ? 1 : 0 ;

16KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Activity

Draw a flowchart for converting a
student grade out of 100% to a
letter grade (use the university
standards)

Write the equivalent code using
nested-if and then using if-else-if

Score LetterGrade

100 – 95 A+

95 – 90 A

90 – 85 B+

85 – 80 B

80 – 75 C+

75 – 70 C

70 – 65 D+

65 – 60 D

0 – 60 F

17KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Iteration Statements
While loop
– A 'while' loop executes a statement, or a block of statements,

repeatedly until the condition specified by the boolean expression
returns false.

while loop syntax:
while (boolean_expression)

statement
Example

true

false

product = 2 * productproduct <= 1000

Activity: Write the code
using while loop.

18KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Iteration Statements …
do-while loop
– Unlike the while loop, the condition is tested after executing the body
– Hence, the body of a while loop may never execute (if the condition is

initially false)
– ‘do-while’ is used when we need the body to execute at least once

even if the condition is initially false
do-while loop syntax:
do

statement
while (boolean_expression);

1. int a = 4;
2. do{
3. System.Console.WriteLine(a);
4. a++;
5. } while (a < 3); Output:

4

19KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Iteration Statements …

for loop
– A compact form for counter-controlled loops

for loop syntax:
for (initializers; expression; iterators)

statement

Example

1. for (int a = 0; a<3; a++)
2. System.Console.WriteLine(a);

Output:
0
1
2

20KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Nested Loops

1. for(int i = 1; i<=5; i++){
2. for(int j = i; j<=5; j++)
3. Console.Write(“{0}x{1}={2}, ”, i, j, i*j);
4. Console.WriteLine();
5. }

21KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Recursive Methods

Example
– For a non-negative integer n, the factorial function is defined as

1. public static long fact (int n)
2. {
3. if (n==0)
4. return 1;
5. else
6. return n*fact(n-1);
7. }

⎩
⎨
⎧

>−
=

=
0)!1(
01

!
nnn
n

n

22KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Other flow control statements
goto statement (usage is not recommended)
– Used to make a jump to a particular labeled part of the program code
– It is also used in the 'switch' statement to jump to another case
– We can use a 'goto' statement to construct a loop

continue statement
– Used to return to the top of a loop without executing the remaining

statements in the loop
break
– Used to break out of a loop and immediately end all further work

within the loop
– Used to get out of a case in a 'switch' statement

return
– Exit out of a method and return to the calling method

throw
– Throws an exception and exit out of a block

foreach
– Iterating through a collection of items (such as an array)

23KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Arrays

An array is an indexed collection of objects, all of the same
type
C# supports
– single-dimensional arrays,
– multidimensional arrays (rectangular arrays) and
– array-of-arrays (jagged arrays)

Declaring Arrays
Initializing Arrays
Accessing Array Members
Arrays are Objects
Using foreach with Arrays
Array Properties and Methods

24KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Declaring Arrays

When declaring an array, the square brackets [] must come
after the type, not the identifier. Placing the brackets after the
identifier is not legal syntax in C#
Array types derive from System.Array.

1. // declare a single-dimensional array
2. int[] grades; // not int grades[];
3.
4. // declare 2-dimensional array (table)
5. int[,] grades;
6.
7. // declare a jagged array (array-of-arrays)
8. int[][] grades;

25KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Creating Array
Declaring arrays does not actually create the arrays
In C#, arrays are objects and must be instantiated
Once an array has been created, its length can't be changed
All elements are automatically initialized to default values

1. //declare and create 1D array
2. int[] grades = new int[10];
3.
4. //declare and create 2D array (table)
5. int[,] grades = new int[3, 4];
6.
7. //declare and create a jagged array
8. byte[][] scores = new byte[5][];
9. for (int x = 0; x < scores.Length; x++)
10. {
11. scores[x] = new byte[4];
12. }

26KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Initializing Arrays
It is possible to initialize the contents of an array at the time it is
instantiated by providing a list of values delimited by curly brackets {}.
C# provides a longer and a shorter syntax:
int[] myIntArray = new int[5]{2,4,6,8,10};
int[] myIntArray = new int[]{2,4,6,8,10};
int[] myIntArray = {2,4,6,8,10};

Rectangular arrays can be initialized as follows
int[,] rectangularArray =

new int [4, 3] { {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11} };
int[,] rectangularArray =

new int [,] { {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}};
int[,] rectangularArray =

{{0,1,2}, {3,4,5}, {6,7,8}, {9,10,11} };
Jagged arrays can be initialized as follows
int[][] rectangularArray = new int [3][]{

new int[2] {0,2},
new int[3] {3,4,5},
new int [3] {6,7,8}}; // new int[] is necessary

27KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Initializing Arrays …
Jagged arrays can be initialized as follows
int[][] rectangularArray = new int [3][]{

new int[2] {0,2},
new int[3] {3,4,5},
new int [3] {6,7,8}};

int[][] rectangularArray = new int [][]{
new int[] {0,2},
new int[] {3,4,5},
new int [] {6,7,8}};

int[][] rectangularArray = {
new int[] {0,2},
new int[] {3,4,5},
new int [] {6,7,8}};

28KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Accessing Array Members
Access the elements of an array using indexed variables
The number of elements in an array is given by the property Length
Array objects can be indexed from 0 to Length-1

1. // double [] scores
2. for(int i = 0; i<scores.Length; i++)
3. Console.WriteLine(scores[i]);

1. // double [,] scores
2. // scores.Length gives the total number of elements
3. //scores.getLength(0) number of rows (first dimension)
4. //scores.getLength(1) number of columns (second

dimension)
5. for(int i = 0; i<scores.getLength(0); i++)
6. for(int j = 0; j<scores.getLength(1); j++)
7. Console.WriteLine(scores[i][i]);

29KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Accessing Array Members…

foreach loop
– Used to iterate through all the items in a collection (such

as a one-dimensional array)
foreach loop syntax
foreach (itemType variable1 in variable2)

Statement[s];

Example
int[] a = {1, 3, 5, 7, 9};
foreach (int i in a)

Console.WriteLine(i);

30KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Accessing Array Members …

Rectangular arrays
Console.WriteLine(scores[2, 1]);

Jagged arrays
Console.WriteLine(scores[2][1]);

31KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Lower Bounds

The Array class can also be created by using the overloaded
static method CreateInstance
– returns an Array
– takes three parameters: an object of type Type (indicating the type of

object to hold in the array), an array of integers indicating the length
of each dimension in the array, and a second array of integers
indicating the lower bound for each dimension

1. int[] lengthsArray = { 3, 5 };
2. int[] boundsArray = { 2, 3 };
3. Array multiDimensionalArray = Array.CreateInstance(

typeof(String), lengthsArray, boundsArray);

32KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Array Properties and Methods

System.Array class provides methods for creating,
manipulating, searching, and sorting arrays.

Method or
property

Purpose

BinarySearch() Overloaded public static method that searches a one-dimensional sorted
array.

Clear() Public static method that sets a range of elements in the array either to 0 or
to a null reference.

Copy() Overloaded public static method that copies a section of one array to another
array.

CreateInstance() Overloaded public static method that instantiates a new instance of an array.

IndexOf() Overloaded public static method that returns the index (offset) of the first
instance of a value in a one-dimensional array.

LastIndexOf() Overloaded public static method that returns the index of the last instance of
a value in a one-dimensional array.

Reverse() Overloaded public static method that reverses the order of the elements in a
one-dimensional array.

Sort() Overloaded public static method that sorts the values in a one-dimensional
array.

33KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Array Properties and Methods …

Length Public property that returns the length of the array.

Rank Public property that returns the number of dimensions of the array.

Equals() Overloaded. Returns a bool that specifies whehter two Object instances are
equal

GetLength() Public method that returns the length of the specified dimension in the
array.

GetLowerBound() Public method that returns the lower boundary of the specified dimension of
the array.

GetUpperBound() Public method that returns the upper boundary of the specified dimension
of the array.

GetType() Returns the type of the current instance

GetValue() Overloaded. Returns the element at the specified index in a one-
dimensional array

Initialize()
Initializes all values in a value type array by calling the default constructor
for each value. With reference arrays, all elements in the array are set to
null.

SetValue() Overloaded public method that sets the specified array elements to a value.

34KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Example 1

Practice using flow control, arrays and strings

1. using System;
2. public class ControlStructures {
3. public static void Main() {
4. String input;
5. do {
6. Console.Write("Type int values to add or stop to exit: ");
7. input = Console.ReadLine();
8. if (input.ToLower() != "stop") {
9. char[] delimiters = {' ', '\t', ','};
10. String[] tokens = input.Split(delimiters);
11. int sum = 0;
12. foreach (String token in tokens)
13. sum += int.Parse(token);
14. Console.WriteLine("The sum is: "+sum);
15. }
16. } while (input.ToLower() != "stop"); // compare strings
17. }
18. }

35KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

Lab Exercises
1. Write a program that reads two integers and print out the maximum, the

minimum, the sum and the average (i) using the Math class (ii) by
defining your own static methods
– Compile and run
– Trace the program execution step by step

2. Design a menu-driven console application to help an instructor teaching
a specific course to manage student grades. The instructor should be
able to enter information about students in his class once. This
information includes number of students, their names and their grades in
a number of quizzes. Then, he should be able to display grade roster
showing all grades, the total and the average for each student, and the
average for each quiz and total average for the whole class. Also he
should be to delete a student, update student information, add a new
student, display students sorted by name or by total grade, etc. Choose a
design approach and justify your choice.
– Use parallel arrays
– Use OOP and array of objects
– Pay attention to the user interface to be more flexible, appealing, etc

36KFUPM: Dr. El-Sayed El-Alfy , Mr.Bashir Ghandi © 2005

